Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah M Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt
tl;dr: A image-text dataset benchmark where model training is fixed and participants iterate on data curation strategies.
Multimodal datasets are a critical component in recent breakthroughs such as CLIP, Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. Our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release \datanet and all accompanying code at www.datacomp.ai.
Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, Minguk Kang, Taesung Park, Jure Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Stefano Ermon, Percy Liang
tl;dr: We present a holistic evaluation framework for text-to-image generation models, assessing their performance across 12 important aspects in real-world deployment. We release all the generated images and evaluation results.
The stunning qualitative improvement of text-to-image models has led to their widespread attention and adoption. However, we lack a comprehensive quantitative understanding of their capabilities and risks. To fill this gap, we introduce a new benchmark, Holistic Evaluation of Text-to-Image Models (HEIM). Whereas previous evaluations focus mostly on image-text alignment and image quality, we identify 12 aspects, including text-image alignment, image quality, aesthetics, originality, reasoning, knowledge, bias, toxicity, fairness, robustness, multilinguality, and efficiency. We curate 62 scenarios encompassing these aspects and evaluate 26 state-of-the-art text-to-image models on this benchmark. Our results reveal that no single model excels in all aspects, with different models demonstrating different strengths. We release the generated images and human evaluation results for full transparency at https://crfm.stanford.edu/heim/latest and the code at https://github.com/stanford-crfm/helm, which is integrated with the HELM codebase
Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus Christopher Will, Gunnar Behrens, Julius Busecke, Nora Loose, Charles I Stern, Tom Beucler, Bryce Harrop, Benjamin R Hillman, Andrea Jenney, Savannah Ferretti, Nana Liu, Anima Anandkumar, Noah D Brenowitz, Veronika Eyring, Nicholas Geneva, Pierre Gentine, Stephan Mandt, Jaideep Pathak, Akshay Subramaniam, Carl Vondrick, Rose Yu, Laure Zanna, Tian Zheng, Ryan Abernathey, Fiaz Ahmed, David C Bader, Pierre Baldi, Elizabeth Barnes, Christopher Bretherton, Peter Caldwell, Wayne Chuang, Yilun Han, YU HUANG, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David Randall, Sara Shamekh, Mark A Taylor, Nathan Urban, Janni Yuval, Guang Zhang, Michael Pritchard
tl;dr: ClimSim is the largest dataset for multi-scale, physics-informed machine learning climate simulations along with a wide range of baselines for the modeling of atmospheric convection and radiation.
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.
Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, Abdullah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri, David Alexandrovich Glushkov, Arnav Varma Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, Alexander Julian Mattick
tl;dr: We crowd-source a high-quality dataset of human demonstrations for assistant-finetuning of LLMs.
Aligning large language models (LLMs) with human preferences has proven to drastically improve usability and has driven rapid adoption as demonstrated by ChatGPT. Alignment techniques such as supervised fine-tuning (\textit{SFT}) and reinforcement learning from human feedback (\textit{RLHF}) greatly reduce the required skill and domain knowledge to effectively harness the capabilities of LLMs, increasing their accessibility and utility across various domains. However, state-of-the-art alignment techniques like \textit{RLHF} rely on high-quality human feedback data, which is expensive to create and often remains proprietary. In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations, a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 complete and fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers. Models trained on OpenAssistant Conversations show consistent improvements on standard benchmarks over respective base models. We release our code\footnote{\git} and data\footnote{\data} under a fully permissive licence.
Jerone Andrews, Dora Zhao, William Thong, Apostolos Modas, Orestis Papakyriakopoulos, Alice Xiang
tl;dr: Practical recommendations for responsibly curating human-centric computer vision datasets for fairness and robustness evaluations, addressing privacy and bias concerns
Human-centric computer vision (HCCV) data curation practices often neglect privacy and bias concerns, leading to dataset retractions and unfair models. HCCV datasets constructed through nonconsensual web scraping lack crucial metadata for comprehensive fairness and robustness evaluations. Current remedies are post hoc, lack persuasive justification for adoption, or fail to provide proper contextualization for appropriate application. Our research focuses on proactive, domain-specific recommendations, covering purpose, privacy and consent, and diversity, for curating HCCV evaluation datasets, addressing privacy and bias concerns. We adopt an ante hoc reflective perspective, drawing from current practices, guidelines, dataset withdrawals, and audits, to inform our considerations and recommendations.
Wisdom Oluchi Ikezogwo, Mehmet Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Stefan Chan Geva, Fatwir Sheikh Mohammed, Pavan Kumar Anand, Ranjay Krishna, Linda Shapiro
Recent accelerations in multi-modal applications have been made possible with the plethora of image and text data available online. However, the scarcity of analogous data in the medical field, specifically in histopathology, has slowed comparable progress. To enable similar representation learning for histopathology, we turn to YouTube, an untapped resource of videos, offering $1,087$ hours of valuable educational histopathology videos from expert clinicians. From YouTube, we curate QUILT: a large-scale vision-language dataset consisting of $802, 144$ image and text pairs. QUILT was automatically curated using a mixture of models, including large language models, handcrafted algorithms, human knowledge databases, and automatic speech recognition. In comparison, the most comprehensive datasets curated for histopathology amass only around $200$K samples. We combine QUILT with datasets from other sources, including Twitter, research papers, and the internet in general, to create an even larger dataset: QUILT-1M, with $1$M paired image-text samples, marking it as the largest vision-language histopathology dataset to date. We demonstrate the value of QUILT-1M by fine-tuning a pre-trained CLIP model. Our model outperforms state-of-the-art models on both zero-shot and linear probing tasks for classifying new histopathology images across $13$ diverse patch-level datasets of $8$ different sub-pathologies and cross-modal retrieval tasks.
Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob Nicolaus Foerster, Shimon Whiteson
tl;dr: Demonstrate that the popular benchmark the Starcraft Multi-Agent Challenge lacks stochasticity and propose a new version, SMACv2 to address this shortcoming.
The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC lacks the stochasticity and partial observability to require complex *closed-loop* policies. In particular, we show that an *open-loop* policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We also introduce the extended partial observability challenge (EPO), which augments SMACv2 to ensure meaningful partial observability. We show that these changes ensure the benchmark requires the use of *closed-loop* policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available on our [website](https://sites.google.com/view/smacv2).
Sneha Kudugunta, Isaac Rayburn Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat
tl;dr: MADLAD-400 is a manually audited general domain monolingual dataset based on CommonCrawl spanning 419 languages.
We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.
Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P. Vetrov, Evgeny Burnaev
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between probability distributions which are accessible by samples. Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schrödinger Bridge problem. In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step, has fast inference procedure, and allows handling small values of the entropy regularization coefficient which is of particular importance in some applied problems. Empirically, we show the performance of the method on several large-scale EOT tasks. The code for the ENOT solver can be found at https://github.com/ngushchin/EntropicNeuralOptimalTransport
Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger, Anima Anandkumar
tl;dr: We introduce open toolkit, benchmarks, and retrieval-augmented language models for theorem proving in Lean.
Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection—a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): an LLM-based prover augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 98,734 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.
Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan David Sherwin, Hannah Kerner, Björn Lütjens, Jeremy Andrew Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, Mehmet Gunturkun, Gabriel Huang, David Vazquez, Dava Newman, Yoshua Bengio, Stefano Ermon, Xiao Xiang Zhu
tl;dr: Benchmark containing 6 classification and 6 segmentation datasets tailored to evaluate large pretrained model on remote sensing data
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to substantial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
Guillermo Ortiz-Jimenez, Alessandro Favero, Pascal Frossard
tl;dr: We present a comprehensive study of task arithmetic and find that linearizing models before fine-tuning improves their performance after editing.
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space: By adding the fine-tuned weights of different tasks, the model's performance can be improved on these tasks, while negating them leads to task forgetting. Yet, our understanding of the effectiveness of task arithmetic and its underlying principles remains limited. We present a comprehensive study of task arithmetic in vision-language models and show that weight disentanglement is the crucial factor that makes it effective. This property arises during pre-training and manifests when distinct directions in weight space govern separate, localized regions in function space associated with the tasks. Notably, we show that fine-tuning models in their tangent space by linearizing them amplifies weight disentanglement. This leads to substantial performance improvements across multiple task arithmetic benchmarks and diverse models. Building on these findings, we provide theoretical and empirical analyses of the neural tangent kernel (NTK) of these models and establish a compelling link between task arithmetic and the spatial localization of the NTK eigenfunctions. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to edit pre-trained models through the NTK linearization.
Yuanyuan Liu, Fanhua Shang, Weixin An, Junhao Liu, Hongying Liu, Zhouchen Lin
In this paper, we propose a novel extra-gradient difference acceleration algorithm for solving constrained nonconvex-nonconcave (NC-NC) minimax problems. In particular, we design a new extra-gradient difference step to obtain an important quasi-cocoercivity property, which plays a key role to significantly improve the convergence rate in the constrained NC-NC setting without additional structural assumption. Then momentum acceleration is also introduced into our dual accelerating update step. Moreover, we prove that, to find an $\epsilon$-stationary point of the function $f$, our algorithm attains the complexity $\mathcal{O}(\epsilon^{-2})$ in the constrained NC-NC setting, while the best-known complexity bound is $\widetilde{\mathcal{O}}(\epsilon^{-4})$, where $\widetilde{\mathcal{O}}(\cdot)$ hides logarithmic factors compared to $\mathcal{O}(\cdot)$. As the special cases of the constrained NC-NC setting, our algorithm can also obtain the same complexity $\mathcal{O}(\epsilon^{-2})$ for both the nonconvex-concave (NC-C) and convex-nonconcave (C-NC) cases, while the best-known complexity bounds are $\widetilde{\mathcal{O}}(\epsilon^{-2.5})$ for the NC-C case and $\widetilde{\mathcal{O}}(\epsilon^{-4})$ for the C-NC case. For fair comparison with existing algorithms, we also analyze the complexity bound to find $\epsilon$-stationary point of the primal function $\phi$ for the constrained NC-C problem, which shows that our algorithm can improve the complexity bound from $\widetilde{\mathcal{O}}(\epsilon^{-3})$ to $\mathcal{O}(\epsilon^{-2})$. To the best of our knowledge, this is the first time that the proposed algorithm improves the best-known complexity bounds from $\mathcal{O}(\epsilon^{-4})$ and $\widetilde{\mathcal{O}}(\epsilon^{-3})$ to $\mathcal{O}(\epsilon^{-2})$ in both the NC-NC and NC-C settings.
Jihao Andreas Lin, Javier Antoran, Shreyas Padhy, David Janz, José Miguel Hernández-Lobato, Alexander Terenin
tl;dr: We sample from GP posteriors using SGD and develop a spectral characterization for why it works, even in cases of non-convergence.
Gaussian processes are a powerful framework for quantifying uncertainty and for sequential decision-making but are limited by the requirement of solving linear systems. In general, this has a cubic cost in dataset size and is sensitive to conditioning. We explore stochastic gradient algorithms as a computationally efficient method of approximately solving these linear systems: we develop low-variance optimization objectives for sampling from the posterior and extend these to inducing points. Counterintuitively, stochastic gradient descent often produces accurate predictions, even in cases where it does not converge quickly to the optimum. We explain this through a spectral characterization of the implicit bias from non-convergence. We show that stochastic gradient descent produces predictive distributions close to the true posterior both in regions with sufficient data coverage, and in regions sufficiently far away from the data. Experimentally, stochastic gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks. Its uncertainty estimates match the performance of significantly more expensive baselines on a large-scale Bayesian~optimization~task.
Daniel Y Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W Thomas, Benjamin Frederick Spector, Michael Poli, Atri Rudra, Christopher Re
tl;dr: We present Monarch Mixer, a new simple architecture that scales sub-quadratically in sequence length and model dimension.
Machine learning models are increasingly being scaled in both sequence length and model dimension to reach longer contexts and better performance. However, existing architectures such as Transformers scale quadratically along both these axes. We ask: are there performant architectures that can scale sub-quadratically along sequence length and model dimension? We introduce Monarch Mixer (M2), a new architecture that uses the same sub-quadratic primitive along both sequence length and model dimension: Monarch matrices, a simple class of expressive structured matrices that captures many linear transforms, achieves high hardware efficiency on GPUs, and scales sub-quadratically. As a proof of concept, we explore the performance of M2 in three domains: non-causal BERT-style language modeling, ViT-style image classification, and causal GPT-style language modeling. For non-causal BERT-style modeling, M2 matches BERT-base and BERT-large in downstream GLUE quality with up to 27% fewer parameters, and achieves up to 9.1$\times$ higher throughput at sequence length 4K. On ImageNet, M2 outperforms ViT-b by 1% in accuracy, with only half the parameters. Causal GPT-style models introduce a technical challenge: enforcing causality via masking introduces a quadratic bottleneck. To alleviate this bottleneck, we develop a novel theoretical view of Monarch matrices based on multivariate polynomial evaluation and interpolation, which lets us parameterize M2 to be causal while remaining sub-quadratic. Using this parameterization, M2 matches GPT-style Transformers at 360M parameters in pretraining perplexity on The PILE—showing for the first time that it may be possible to match Transformer quality without attention or MLPs.
Stephanie Milani, Anssi Kanervisto, Karolis Ramanauskas, Sander V Schulhoff, Brandon Houghton, Rohin Shah
tl;dr: To facilitate algorithm development for the BASALT benchmark, we provide a large-scale dataset of human demonstrations and evaluations, along with a streamlined codebase for training, evaluating, and analyzing algorithms.
The MineRL BASALT competition has served to catalyze advances in learning from human feedback through four hard-to-specify tasks in Minecraft, such as create and photograph a waterfall. Given the completion of two years of BASALT competitions, we offer to the community a formalized benchmark through the BASALT Evaluation and Demonstrations Dataset (BEDD), which serves as a resource for algorithm development and performance assessment. BEDD consists of a collection of 26 million image-action pairs from nearly 14,000 videos of human players completing the BASALT tasks in Minecraft. It also includes over 3,000 dense pairwise human evaluations of human and algorithmic agents. These comparisons serve as a fixed, preliminary leaderboard for evaluating newly-developed algorithms. To enable this comparison, we present a streamlined codebase for benchmarking new algorithms against the leaderboard. In addition to presenting these datasets, we conduct a detailed analysis of the data from both datasets to guide algorithm development and evaluation. The released code and data are available at https://github.com/minerllabs/basalt-benchmark.
Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang, Reynold Cheng, Yongbin Li
Text-to-SQL parsing, which aims at converting natural language instructions into executable SQLs, has gained increasing attention in recent years. In particular, GPT-4 and Claude-2 have shown impressive results in this task. However, most of the prevalent benchmarks, i.e., Spider, and WikiSQL, focus on database schema with few rows of database contents leaving the gap between academic study and real-world applications. To mitigate this gap, we present BIRD, a BIg benchmark for laRge-scale Database grounded in text-to-SQL tasks, containing 12,751 pairs of text-to-SQL data and 95 databases with a total size of 33.4 GB, spanning 37 professional domains. Our emphasis on database values highlights the new challenges of dirty database contents, external knowledge between NL questions and database contents, and SQL efficiency, particularly in the context of massive databases. To solve these problems, text-to-SQL models must feature database value comprehension in addition to semantic parsing. The experimental results demonstrate the significance of database values in generating accurate text-to-SQLs for big databases. Furthermore, even the most popular and effective text-to-SQL models, i.e. GPT-4, only achieve 54.89% in execution accuracy, which is still far from the human result of 92.96%, proving that challenges still stand. We also provide an efficiency analysis to offer insights into generating text-to-efficient-SQLs that are beneficial to industries. We believe that BIRD will contribute to advancing real-world applications of text-to-SQL research. The leaderboard and source code are available: https://bird-bench.github.io/.
Konstantin Makarychev, Liren Shan
tl;dr: We provide the optimal competitive ratio for explainable k-medians.
We show that the RandomCoordinateCut algorithm gives the optimal competitive ratio for explainable $k$-medians in $\ell_1$. The problem of explainable $k$-medians was introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian in 2020. Several groups of authors independently proposed a simple polynomial-time randomized algorithm for the problem and showed that this algorithm is $O(\log k \log\log k)$ competitive. We provide a tight analysis of the algorithm and prove that its competitive ratio is upper bounded by $2\ln k+2$. This bound matches the $\Omega(\log k)$ lower bound by Dasgupta et al (2020).
Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, Liwei Wang
tl;dr: This paper theoretically and empirically show the utility of CoT in LLMs.
Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the \emph{expressivity} of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows \emph{super-polynomially} with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of \emph{constant size} suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.
Kevin Ellis
tl;dr: We build a model of human concept learning by integrating language models with probabilistic reasoning
A core tension in models of concept learning is that the model must carefully balance the tractability of inference against the expressivity of the hypothesis class. Humans, however, can efficiently learn a broad range of concepts. We introduce a model of inductive learning that seeks to be human-like in that sense. It implements a Bayesian reasoning process where a language model first proposes candidate hypotheses expressed in natural language, which are then re-weighed by a prior and a likelihood. By estimating the prior from human data, we can predict human judgments on learning problems involving numbers and sets, spanning concepts that are generative, discriminative, propositional, and higher-order.
Spyros Kondylatos, Ioannis Prapas, Gustau Camps-Valls, Ioannis Papoutsis
tl;dr: This paper introduces Mesogeos, a large-scale multi-purpose dataset for wildfire modeling in the Mediterranean.
We introduce Mesogeos, a large-scale multi-purpose dataset for wildfire modeling in the Mediterranean. Mesogeos integrates variables representing wildfire drivers (meteorology, vegetation, human activity) and historical records of wildfire ignitions and burned areas for 17 years (2006-2022). It is designed as a cloud-friendly spatio-temporal dataset, namely a datacube, harmonizing all variables in a grid of 1km x 1km x 1-day resolution. The datacube structure offers opportunities to assess machine learning (ML) usage in various wildfire modeling tasks. We extract two ML-ready datasets that establish distinct tracks to demonstrate this potential: (1) short-term wildfire danger forecasting and (2) final burned area estimation given the point of ignition. We define appropriate metrics and baselines to evaluate the performance of models in each track. By publishing the datacube, along with the code to create the ML datasets and models, we encourage the community to foster the implementation of additional tracks for mitigating the increasing threat of wildfires in the Mediterranean.
Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae Yu, Ludwig Schmidt, William Yang Wang, Yejin Choi
tl;dr: A multimodal corpus consisting of 100M+ documents with 571M images interleaved in 43B English tokens.
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., ``What do image A and image B have in common?'' To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4, an augmentation of the popular text-only C4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. Multimodal C4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (88\%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (80\%). After filtering NSFW images, ads, etc., the resulting corpus consists of 101.2M documents with 571M images interleaved in 43B English tokens.
Veit David Wild, Sahra Ghalebikesabi, Dino Sejdinovic, Jeremias Knoblauch
tl;dr: We establish the first unified theory connecting Bayesian, variational Bayesian, and ensemble methods for deep learning by leveraging Wasserstein Gradient Flows.
We establish the first mathematically rigorous link between Bayesian, variational Bayesian, and ensemble methods. A key step towards this it to reformulate the non-convex optimisation problem typically encountered in deep learning as a convex optimisation in the space of probability measures. On a technical level, our contribution amounts to studying generalised variational inference through the lense of Wasserstein gradient flows. The result is a unified theory of various seemingly disconnected approaches that are commonly used for uncertainty quantification in deep learning---including deep ensembles and (variational) Bayesian methods. This offers a fresh perspective on the reasons behind the success of deep ensembles over procedures based on parameterised variational inference, and allows the derivation of new ensembling schemes with convergence guarantees. We showcase this by proposing a family of interacting deep ensembles with direct parallels to the interactions of particle systems in thermodynamics, and use our theory to prove the convergence of these algorithms to a well-defined global minimiser on the space of probability measures.
Sheikh Md Shakeel Hassan, Arthur Feeney, Akash Dhruv, Jihoon Kim, Youngjoon Suh, Jaiyoung Ryu, Yoonjin Won, Aparna Chandramowlishwaran
tl;dr: We enable machine learning driven research on phase change phenomena by providing a comprehensive, open source dataset of high fidelity Boiling Simulations and relevant benchmarks.
In the field of phase change phenomena, the lack of accessible and diverse datasets suitable for machine learning (ML) training poses a significant challenge. Existing experimental datasets are often restricted, with limited availability and sparse ground truth, impeding our understanding of this complex multiphysics phenomena. To bridge this gap, we present the BubbleML dataset which leverages physics-driven simulations to provide accurate ground truth information for various boiling scenarios, encompassing nucleate pool boiling, flow boiling, and sub-cooled boiling. This extensive dataset covers a wide range of parameters, including varying gravity conditions, flow rates, sub-cooling levels, and wall superheat, comprising 79 simulations. BubbleML is validated against experimental observations and trends, establishing it as an invaluable resource for ML research. Furthermore, we showcase its potential to facilitate the exploration of diverse downstream tasks by introducing two benchmarks: (a) optical flow analysis to capture bubble dynamics, and (b) neural PDE solvers for learning temperature and flow dynamics. The BubbleML dataset and its benchmarks aim to catalyze progress in ML-driven research on multiphysics phase change phenomena, providing robust baselines for the development and comparison of state-of-the-art techniques and models.
Moni Naor, Kobbi Nissim, Uri Stemmer, Chao Yan
A private learner is trained on a sample of labeled points and generatesa hypothesis that can be used for predicting the labels of newly sampled points while protecting the privacy of the training set [Kasiviswannathan et al., FOCS 2008]. Research uncovered that private learners may need to exhibit significantly higher sample complexity than non-private learners as is the case with, e.g., learning of one-dimensional threshold functions [Bun et al., FOCS 2015, Alon et al., STOC 2019]. We explore prediction as an alternative to learning. Instead of putting forward a hypothesis, a predictor answers a stream of classification queries. Earlier work has considered a private prediction model with just a single classification query [Dwork and Feldman, COLT 2018]. We observe that when answering a stream of queries, a predictor must modify the hypothesis it uses over time, and, furthermore, that it must use the queries for this modification, hence introducing potential privacy risks with respect to the queries themselves. We introduce private everlasting prediction taking into account the privacy of both the training set and the (adaptively chosen) queries made to the predictor. We then present a generic construction of private everlasting predictors in the PAC model. The sample complexity of the initial training sample in our construction is quadratic (up to polylog factors) in the VC dimension of the concept class. Our construction allows prediction for all concept classes with finite VC dimension, and in particular threshold functions with constant size initial training sample, even when considered over infinite domains, whereas it is known that the sample complexity of privately learning threshold functions must grow as a function of the domain size and hence is impossible for infinite domains.
Rylan Schaeffer, Brando Miranda, Sanmi Koyejo
tl;dr: Some have argued that some improvements in model capabilities are unpredictable; we argue that many claimed emergent capabilities are predictable, either using better statistics or alternative metrics
Recent work claims that large language models display \textit{emergent abilities}, abilities not present in smaller-scale models that are present in larger-scale models. What makes emergent abilities intriguing is two-fold: their \textit{sharpness}, transitioning seemingly instantaneously from not present to present, and their \textit{unpredictability}, appearing at seemingly unforeseeable model scales. Here, we present an alternative explanation for emergent abilities: that for a particular task and model family, when analyzing fixed model outputs, emergent abilities appear due the researcher’s choice of metric rather than due to fundamental changes in model behavior with scale. Specifically, nonlinear or discontinuous metrics produce apparent emergent abilities, whereas linear or continuous metrics produce smooth, continuous, predictable changes in model performance. We present our alternative explanation in a simple mathematical model, then test it in three complementary ways: we (1) make, test and confirm three predictions on the effect of metric choice using the InstructGPT/GPT-3 family on tasks with claimed emergent abilities, (2) make, test and confirm two predictions about metric choices in a meta-analysis of emergent abilities on BIG-Bench; and (3) show how to choose metrics to produce never-before-seen seemingly emergent abilities in multiple vision tasks across diverse deep networks. Via all three analyses, we provide evidence that alleged emergent abilities evaporate with different metrics or with better statistics, and may not be a fundamental property of scaling AI models.
Michael Tschannen, Manoj Kumar, Andreas Peter Steiner, Xiaohua Zhai, Neil Houlsby, Lucas Beyer
tl;dr: We present an extensive comparison of contrastive representation learning and representation learning via image captioning from large image-text data sets.
Contrastive pretraining on image-text pairs from the web is one of the most popular large-scale pretraining strategies for vision backbones, especially in the context of large multimodal models. At the same time, image captioning on this type of data is commonly considered an inferior pretraining strategy. In this paper, we perform a fair comparison of these two pretraining strategies, carefully matching training data, compute, and model capacity. Using a standard encoder-decoder transformer, we find that captioning alone is surprisingly effective: on classification tasks, captioning produces vision encoders competitive with contrastively pretrained encoders, while surpassing them on vision & language tasks. We further analyze the effect of the model architecture and scale, as well as the pretraining data on the representation quality, and find that captioning exhibits the same or better scaling behavior along these axes. Overall our results show that plain image captioning is a more powerful pretraining strategy than was previously believed.
Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy Liang, Tatsunori Hashimoto
tl;dr: We propose and validate a simulator that enables research on learning from human feedback at a low cost.
Large language models (LLMs) such as ChatGPT have seen widespread adoption due to their ability to follow user instructions well. Developing these LLMs involves a complex yet poorly understood workflow requiring training with human feedback. Replicating and understanding this instruction-following process faces three major challenges: the high cost of data collection, the lack of trustworthy evaluation, and the absence of reference method implementations. We address these bottlenecks with AlpacaFarm, a simulator that enables research and development for learning from feedback at a low cost. First, we design LLM based simulator for human feedback that is 45x cheaper than crowdworkers and displays high agreement with humans. Second, we identify an evaluation dataset representative of real-world instructions and propose an automatic evaluation procedure. Third, we contribute reference implementations for several methods (PPO, best-of-n, expert iteration, among others) that learn from pairwise feedback. Finally, as an end-to-end validation of AlpacaFarm, we train and evaluate eleven models on 10k pairs of human feedback and show that rankings of models trained in AlpacaFarm match rankings of models trained on human data. As a demonstration of the research possible in AlpacaFarm, we find that methods that use a reward model can substantially improve over supervised fine-tuning and that our reference PPO implementation leads to a +10% win-rate improvement against Davinci003.
Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer
tl;dr: We develop a method that enabling the finetuning of a 65B model on a single GPU without performance degradation achieving ChatGPT-quaity results on the Vicuna benchmark.
We present QLoRA, an efficient finetuning approach that reduces memory usage enough to finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit finetuning task performance. QLoRA backpropagates gradients through a frozen, 4-bit quantized pretrained language model into Low Rank Adapters~(LoRA). Our best model family, which we name Guanaco, outperforms all previous openly released models on the Vicuna benchmark, reaching 99.3% of the performance level of ChatGPT while only requiring 24 hours of finetuning on a single GPU. QLoRA introduces a number of innovations to save memory without sacrificing performance: (a) 4-bit NormalFloat (NF4), a new data type that is information-theoretically optimal for normally distributed weights (b) Double Quantization to reduce the average memory footprint by quantizing the quantization constants, and (c) Paged Optimziers to manage memory spikes. We use QLoRA to finetune more than 1,000 models, providing a detailed analysis of instruction following and chatbot performance across 8 instruction datasets, multiple model types (LLaMA, T5), and model scales that would be infeasible to run with regular finetuning (e.g. 33B and 65B parameter models). Our results show that QLoRA finetuning on a small, high-quality dataset leads to state-of-the-art results, even when using smaller models than the previous SoTA. We provide a detailed analysis of chatbot performance based on both human and GPT-4 evaluations, showing that GPT-4 evaluations are a cheap and reasonable alternative to human evaluation. Furthermore, we find that current chatbot benchmarks are not trustworthy to accurately evaluate the performance levels of chatbots. A lemon-picked analysis demonstrates where Guanaco fails compared to ChatGPT. We release all of our models and code, including CUDA kernels for 4-bit training.
Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, Chelsea Finn
tl;dr: Fine-tuning with RLHF is complicated; we show that it doesn't need to be.
While large-scale unsupervised language models (LMs) learn broad world knowledge and some reasoning skills, achieving precise control of their behavior is difficult due to the completely unsupervised nature of their training. Existing methods for gaining such steerability collect human labels of the relative quality of model generations and fine-tune the unsupervised LM to align with these preferences, often with reinforcement learning from human feedback (RLHF). However, RLHF is a complex and often unstable procedure, first fitting a reward model that reflects the human preferences, and then fine-tuning the large unsupervised LM using reinforcement learning to maximize this estimated reward without drifting too far from the original model. In this paper, we leverage a mapping between reward functions and optimal policies to show that this constrained reward maximization problem can be optimized exactly with a single stage of policy training, essentially solving a classification problem on the human preference data. The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight, eliminating the need for fitting a reward model, sampling from the LM during fine-tuning, or performing significant hyperparameter tuning. Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods. Notably, fine-tuning with DPO exceeds RLHF's ability to control sentiment of generations and improves response quality in summarization and single-turn dialogue while being substantially simpler to implement and train.
Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma, Zhiguang Cao
tl;dr: A novel, extendable and user-friendly Benchmark Platform for MetaBBO with Reinforcement Learning.
Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-RL) has showcased the power of leveraging RL at the meta-level to mitigate manual fine-tuning of low-level black-box optimizers. However, this field is hindered by the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first benchmark platform expressly tailored for developing and evaluating MetaBBO-RL methods. MetaBox offers a flexible algorithmic template that allows users to effortlessly implement their unique designs within the platform. Moreover, it provides a broad spectrum of over 300 problem instances, collected from synthetic to realistic scenarios, and an extensive library of 19 baseline methods, including both traditional black-box optimizers and recent MetaBBO-RL methods. Besides, MetaBox introduces three standardized performance metrics, enabling a more thorough assessment of the methods. In a bid to illustrate the utility of MetaBox for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is open-source and accessible at: https://github.com/GMC-DRL/MetaBox.
Paul Rosa, Viacheslav Borovitskiy, Alexander Terenin, Judith Rousseau
Gaussian processes are used in many machine learning applications that rely on uncertainty quantification. Recently, computational tools for working with these models in geometric settings, such as when inputs lie on a Riemannian manifold, have been developed. This raises the question: can these intrinsic models be shown theoretically to lead to better performance, compared to simply embedding all relevant quantities into $\mathbb{R}^d$ and using the restriction of an ordinary Euclidean Gaussian process? To study this, we prove optimal contraction rates for intrinsic Matérn Gaussian processes defined on compact Riemannian manifolds. We also prove analogous rates for extrinsic processes using trace and extension theorems between manifold and ambient Sobolev spaces: somewhat surprisingly, the rates obtained turn out to coincide with those of the intrinsic processes, provided that their smoothness parameters are matched appropriately. We illustrate these rates empirically on a number of examples, which, mirroring prior work, show that intrinsic processes can achieve better performance in practice. Therefore, our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency of geometric Gaussian processes, particularly in settings which involve small data set sizes and non-asymptotic behavior.
Francis Rhys Ward, Francesca Toni, Francesco Belardinelli, Tom Everitt
tl;dr: We formally define deception in the causal game framework and mitigate deception in reinforcement learning agents and language models.
Deceptive agents are a challenge for the safety, trustworthiness, and cooperation of AI systems. We focus on the problem that agents might deceive in order to achieve their goals (for instance, in our experiments with language models, the goal of being evaluated as truthful). There are a number of existing definitions of deception in the literature on game theory and symbolic AI, but there is no overarching theory of deception for learning agents in games. We introduce a formal definition of deception in structural causal games, grounded in the philosophy literature, and applicable to real-world machine learning systems. Several examples and results illustrate that our formal definition aligns with the philosophical and commonsense meaning of deception. Our main technical result is to provide graphical criteria for deception. We show, experimentally, that these results can be used to mitigate deception in reinforcement learning agents and language models.
Marco Aversa, Gabriel Nobis, Miriam Hägele, Kai Standvoss, Mihaela Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova, Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala
We present DiffInfinite, a hierarchical diffusion model that generates arbitrarily large histological images while preserving long-range correlation structural information. Our approach first generates synthetic segmentation masks, subsequently used as conditions for the high-fidelity generative diffusion process. The proposed sampling method can be scaled up to any desired image size while only requiring small patches for fast training. Moreover, it can be parallelized more efficiently than previous large-content generation methods while avoiding tiling artifacts. The training leverages classifier-free guidance to augment a small, sparsely annotated dataset with unlabelled data. Our method alleviates unique challenges in histopathological imaging practice: large-scale information, costly manual annotation, and protective data handling. The biological plausibility of DiffInfinite data is evaluated in a survey by ten experienced pathologists as well as a downstream classification and segmentation task. Samples from the model score strongly on anti-copying metrics which is relevant for the protection of patient data.
Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou Wang, Yaodong Yang
tl;dr: A RLHF dataset that decouples the dimensions of harmlessness and helpfulness in human preference
In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety alignment in large language models (LLMs). This dataset uniquely separates annotations of helpfulness and harmlessness for question-answering pairs, thus offering distinct perspectives on these crucial attributes. In total, we have gathered safety meta-labels for 333,963 question-answer (QA) pairs and 361,903 pairs of expert comparison data for both the helpfulness and harmlessness metrics. We further showcase applications of BeaverTails in content moderation and reinforcement learning with human feedback (RLHF), emphasizing its potential for practical safety measures in LLMs. We believe this dataset provides vital resources for the community, contributing towards the safe development and deployment of LLMs. Our project page is available at the following URL: https://sites.google.com/view/pku-beavertails.
Seongsu Bae, Daeun Kyung, Jaehee Ryu, Eunbyeol Cho, Gyubok Lee, Sunjun Kweon, Jungwoo Oh, Lei Ji, Eric I-Chao Chang, Tackeun Kim, Edward Choi
tl;dr: A Multi-Modal Question Answering Dataset for Electronic Health Records with Chest X-ray Images
Electronic Health Records (EHRs), which contain patients' medical histories in various multi-modal formats, often overlook the potential for joint reasoning across imaging and table modalities underexplored in current EHR Question Answering (QA) systems. In this paper, we introduce EHRXQA, a novel multi-modal question answering dataset combining structured EHRs and chest X-ray images. To develop our dataset, we first construct two uni-modal resources: 1) The MIMIC- CXR-VQA dataset, our newly created medical visual question answering (VQA) benchmark, specifically designed to augment the imaging modality in EHR QA, and 2) EHRSQL (MIMIC-IV), a refashioned version of a previously established table-based EHR QA dataset. By integrating these two uni-modal resources, we successfully construct a multi-modal EHR QA dataset that necessitates both uni-modal and cross-modal reasoning. To address the unique challenges of multi-modal questions within EHRs, we propose a NeuralSQL-based strategy equipped with an external VQA API. This pioneering endeavor enhances engagement with multi-modal EHR sources and we believe that our dataset can catalyze advances in real-world medical scenarios such as clinical decision-making and research. EHRXQA is available at https://github.com/baeseongsu/ehrxqa.
Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, Timothy P Lillicrap
There is a growing interest in device-control systems that can interpret human natural language instructions and execute them on a digital device by directly controlling its user interface. We present a dataset for device-control research, Android in the Wild (AitW), which is orders of magnitude larger than current datasets. The dataset contains human demonstrations of device interactions, including the screens and actions, and corresponding natural language instructions. It consists of 715k episodes spanning 30k unique instructions, four versions of Android (v10–13), and eight device types (Pixel 2 XL to Pixel 6) with varying screen resolutions. It contains multi-step tasks that require semantic understanding of language and visual context. This dataset poses a new challenge: actions available through the user interface must be inferred from their visual appearance, and, instead of simple UI element-based actions, the action space consists of precise gestures (e.g., horizontal scrolls to operate carousel widgets). We organize our dataset to encourage robustness analysis of device-control systems, i.e., how well a system performs in the presence of new task descriptions, new applications, or new platform versions. We develop two agents and report performance across the dataset. The dataset is available at https://github.com/google-research/google-research/tree/master/android_in_the_wild.
Dongwei Pan, Long Zhuo, Jingtan Piao, Huiwen Luo, Wei Cheng, Yuxin WANG, Siming Fan, Shengqi Liu, Lei Yang, Bo Dai, Ziwei Liu, Chen Change Loy, Chen Qian, Wayne Wu, Dahua Lin, Kwan-Yee Lin
tl;dr: A large-scale digital library for head avatars with three key attributes: high-fidelity, high diversity and rich annotation. 5 benchmarks with 16 methods.
Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is the inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes, such as expressions, ages, and accessories. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar algorithms across different scenarios. It contains massive data assets, with 243+ million complete head frames and over 800k video sequences from 500 different identities captured by multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured in 360 degrees via 60 synchronized, high-resolution 2K cameras. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various dynamic motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: the dataset provides annotations with different granularities: cameras' parameters, background matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and flaws of state-of-the-art methods. RenderMe-360 opens the door for future exploration in modern head avatars. All of the data, code, and models will be publicly available at https://renderme-360.github.io/.
Laura Gustafson, Megan Richards, Melissa Hall, Caner Hazirbas, Diane Bouchacourt, Mark Ibrahim
tl;dr: We annotate Dollar Street, a geographically diverse image datasets of household objects, with factors to explain how object differ and why classifier mistakes arise across incomes and geographies.
Despite impressive advances in object-recognition, deep learning systems’ performance degrades significantly across geographies and lower income levels---raising pressing concerns of inequity. Addressing such performance gaps remains a challenge, as little is understood about why performance degrades across incomes or geographies. We take a step in this direction by annotating images from Dollar Street, a popular benchmark of geographically and economically diverse images, labeling each image with factors such as color, shape, and background. These annotations unlock a new granular view into how objects differ across incomes/regions. We then use these object differences to pinpoint model vulnerabilities across incomes and regions. We study a range of modern vision models, finding that performance disparities are most associated with differences in _texture, occlusion_, and images with _darker lighting_. We illustrate how insights from our factor labels can surface mitigations to improve models' performance disparities. As an example, we show that mitigating a model's vulnerability to texture can improve performance on the lower income level. **We release all the factor annotations along with an interactive dashboard to facilitate research into more equitable vision systems.**
MD WAHIDUZZAMAN KHAN, Hongwei Sheng, Hu Zhang, Heming Du, Sen Wang, Minas Theodore Coroneo, Farshid Hajati, Sahar Shariflou, Michael Kalloniatis, Jack Phu, Ashish Agar, Zi Huang, Mojtaba Golzan, Xin Yu
tl;dr: We introduce the first video-based retinal vessel dataset (RVD), a collection of 635 smartphone-based videos with detailed vessel annotation.
Retinal vessel segmentation is generally grounded in image-based datasets collected with bench-top devices. The static images naturally lose the dynamic characteristics of retina fluctuation, resulting in diminished dataset richness, and the usage of bench-top devices further restricts dataset scalability due to its limited accessibility. Considering these limitations, we introduce the first video-based retinal dataset by employing handheld devices for data acquisition. The dataset comprises 635 smartphone-based fundus videos collected from four different clinics, involving 415 patients from 50 to 75 years old. It delivers comprehensive and precise annotations of retinal structures in both spatial and temporal dimensions, aiming to advance the landscape of vasculature segmentation. Specifically, the dataset provides three levels of spatial annotations: binary vessel masks for overall retinal structure delineation, general vein-artery masks for distinguishing the vein and artery, and fine-grained vein-artery masks for further characterizing the granularities of each artery and vein. In addition, the dataset offers temporal annotations that capture the vessel pulsation characteristics, assisting in detecting ocular diseases that require fine-grained recognition of hemodynamic fluctuation. In application, our dataset exhibits a significant domain shift with respect to data captured by bench-top devices, thus posing great challenges to existing methods. Thanks to rich annotations and data scales, our dataset potentially paves the path for more advanced retinal analysis and accurate disease diagnosis. In the experiments, we provide evaluation metrics and benchmark results on our dataset, reflecting both the potential and challenges it offers for vessel segmentation tasks. We hope this challenging dataset would significantly contribute to the development of eye disease diagnosis and early prevention.
Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas
tl;dr: We provide (almost) optimal learners, in terms of their sample complexity, for realizable regression in the context of PAC learning and in the context of online learning.
In this work, we aim to characterize the statistical complexity of realizable regression both in the PAC learning setting and the online learning setting. Previous work had established the sufficiency of finiteness of the fat shattering dimension for PAC learnability and the necessity of finiteness of the scaled Natarajan dimension, but little progress had been made towards a more complete characterization since the work of Simon 1997 (SICOMP '97). To this end, we first introduce a minimax instance optimal learner for realizable regression and propose a novel dimension that both qualitatively and quantitatively characterizes which classes of real-valued predictors are learnable. We then identify a combinatorial dimension related to the graph dimension that characterizes ERM learnability in the realizable setting. Finally, we establish a necessary condition for learnability based on a combinatorial dimension related to the DS dimension, and conjecture that it may also be sufficient in this context. Additionally, in the context of online learning we provide a dimension that characterizes the minimax instance optimal cumulative loss up to a constant factor and design an optimal online learner for realizable regression, thus resolving an open question raised by Daskalakis and Golowich in STOC '22.
Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li
tl;dr: We propose a comprehensive trustworthiness evaluation for large language models considering diverse perspectives – including toxicity, stereotype bias, robustness, privacy, machine ethics, and fairness.
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance – where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives – including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.
Ruth Dannenfelser, Jeffrey Zhong, Ran Zhang, Vicky Yao
Many of the most commonly explored natural language processing (NLP) information extraction tasks can be thought of as evaluations of declarative knowledge, or fact-based information extraction. Procedural knowledge extraction, i.e., breaking down a described process into a series of steps, has received much less attention, perhaps in part due to the lack of structured datasets that capture the knowledge extraction process from end-to-end. To address this unmet need, we present FlaMBé (Flow annotations for Multiverse Biological entities), a collection of expert-curated datasets across a series of complementary tasks that capture procedural knowledge in biomedical texts. This dataset is inspired by the observation that one ubiquitous source of procedural knowledge that is described as unstructured text is within academic papers describing their methodology. The workflows annotated in FlaMBé are from texts in the burgeoning field of single cell research, a research area that has become notorious for the number of software tools and complexity of workflows used. Additionally, FlaMBé provides, to our knowledge, the largest manually curated named entity recognition (NER) and disambiguation (NED) datasets for tissue/cell type, a fundamental biological entity that is critical for knowledge extraction in the biomedical research domain. Beyond providing a valuable dataset to enable further development of NLP models for procedural knowledge extraction, automating the process of workflow mining also has important implications for advancing reproducibility in biomedical research.
Nico Montali, John Lambert, Paul Mougin, Alex Kuefler, Nicholas Rhinehart, Michelle Li, Cole Gulino, Tristan Emrich, Zoey Zeyu Yang, Shimon Whiteson, Brandyn White, Dragomir Anguelov
tl;dr: We introduce the Waymo Open Sim Agents Challenge (WOSAC), the first public challenge to tackle this task and propose corresponding metrics.
Simulation with realistic, interactive agents represents a key task for autonomous vehicle software development. In this work, we introduce the Waymo Open Sim Agents Challenge (WOSAC). WOSAC is the first public challenge to tackle this task and propose corresponding metrics. The goal of the challenge is to stimulate the design of realistic simulators that can be used to evaluate and train a behavior model for autonomous driving. We outline our evaluation methodology, present results for a number of different baseline simulation agent methods, and analyze several submissions to the 2023 competition which ran from March 16, 2023 to May 23, 2023. The WOSAC evaluation server remains open for submissions and we discuss open problems for the task.
David Ruhe, Johannes Brandstetter, Patrick Forré
tl;dr: A method to construct E(n)- and O(n)-equivariant neural networks using Clifford algebras.
We introduce Clifford Group Equivariant Neural Networks: a novel approach for constructing $\mathrm{O}(n)$- and $\mathrm{E}(n)$-equivariant models. We identify and study the *Clifford group*: a subgroup inside the Clifford algebra tailored to achieve several favorable properties. Primarily, the group's action forms an orthogonal automorphism that extends beyond the typical vector space to the entire Clifford algebra while respecting the multivector grading. This leads to several non-equivalent subrepresentations corresponding to the multivector decomposition. Furthermore, we prove that the action respects not just the vector space structure of the Clifford algebra but also its multiplicative structure, i.e., the geometric product. These findings imply that every polynomial in multivectors, including their grade projections, constitutes an equivariant map with respect to the Clifford group, allowing us to parameterize equivariant neural network layers. An advantage worth mentioning is that we obtain expressive layers that can elegantly generalize to inner-product spaces of any dimension. We demonstrate, notably from a single core implementation, state-of-the-art performance on several distinct tasks, including a three-dimensional $n$-body experiment, a four-dimensional Lorentz-equivariant high-energy physics experiment, and a five-dimensional convex hull experiment.
ZAIXI ZHANG, Zepu Lu, Zhongkai Hao, Marinka Zitnik, Qi Liu
The design of \emph{de novo} functional proteins that bind with specific ligand molecules is crucial in various domains like therapeutics and bio-engineering. One vital yet challenging step is to design the protein pocket, the cavity region of protein where the ligand binds with. Existing methods suffer from inefficient generation, insufficient context modeling (ligand molecule), and incapability of generating sidechain atoms. To overcome the limitations, we propose a \textbf{F}ull-\textbf{A}tom \textbf{I}terative \textbf{R}efinement framework (\textbf{FAIR}) for protein pocket sequence (i.e., residue types) and 3D structure co-design. Generally, FAIR consists of two steps that follow a coarse-to-fine pipeline (backbone atoms to full atoms including sidechain) for full-atom generation. For efficiency, all residue types and structures are updated together in each round (i.e., full-shot refinement). In the first step, the residue types and backbone coordinates are updated with a hierarchical context encoder and two structure refinement modules capturing inter-residue and pocket-ligand interactions. The second step further models the sidechain atoms of pockets and updates residue types to achieve sequence-structure consistency. The structure of the binding ligand is also updated along with the above refinement iterations accounting for its flexibility. Finally, extensive evaluations show that FAIR outperforms baselines in efficiently designing high-quality pocket sequences and structures. Specifically, the average improvements on AAR and RMSD are over 10$\%$.
Gaku Morio, Christopher D Manning
As societal awareness of climate change grows, corporate climate policy engagements are attracting attention. We propose a dataset to estimate corporate climate policy engagement from various PDF-formatted documents. Our dataset comes from LobbyMap (a platform operated by global think tank InfluenceMap) that provides engagement categories and stances on the documents. To convert the LobbyMap data into the structured dataset, we developed a pipeline using text extraction and OCR. Our contributions are: (i) Building an NLP dataset including 10K documents on corporate climate policy engagement. (ii) Analyzing the properties and challenges of the dataset. (iii) Providing experiments for the dataset using pre-trained language models. The results show that while Longformer outperforms baselines and other pre-trained models, there is still room for significant improvement. We hope our work begins to bridge research on NLP and climate change.
Yingtai Xiao, Guanlin He, Danfeng Zhang, Daniel Kifer
tl;dr: An optimal and extremely scalable algorithm for differentially private marginals with unbiased noise, exact variance/covariance guarantees and customizable loss function
Noisy marginals are a common form of confidentiality-protecting data release and are useful for many downstream tasks such as contingency table analysis, construction of Bayesian networks, and even synthetic data generation. Privacy mechanisms that provide unbiased noisy answers to linear queries (such as marginals) are known as matrix mechanisms. We propose ResidualPlanner, a matrix mechanism for marginals with Gaussian noise that is both optimal and scalable. ResidualPlanner can optimize for many loss functions that can be written as a convex function of marginal variances (prior work was restricted to just one predefined objective function). ResidualPlanner can optimize the accuracy of marginals in large scale settings in seconds, even when the previous state of the art (HDMM) runs out of memory. It even runs on datasets with 100 attributes in a couple of minutes. Furthermore ResidualPlanner can efficiently compute variance/covariance values for each marginal (prior methods quickly run out of memory, even for relatively small datasets).
Alex Damian, Eshaan Nichani, Rong Ge, Jason D. Lee
tl;dr: We prove that online SGD on a smoothed loss achieves optimal sample complexity for learning single index models.
We focus on the task of learning a single index model $\sigma(w^\star \cdot x)$ with respect to the isotropic Gaussian distribution in $d$ dimensions. Prior work has shown that the sample complexity of learning $w^\star$ is governed by the information exponent $k^\star$ of the link function $\sigma$, which is defined as the index of the first nonzero Hermite coefficient of $\sigma$. Ben Arous et al. (2021) showed that $n \gtrsim d^{k^\star-1}$ samples suffice for learning $w^\star$ and that this is tight for online SGD. However, the CSQ lower bound for gradient based methods only shows that $n \gtrsim d^{k^\star/2}$ samples are necessary. In this work, we close the gap between the upper and lower bounds by showing that online SGD on a smoothed loss learns $w^\star$ with $n \gtrsim d^{k^\star/2}$ samples. We also draw connections to statistical analyses of tensor PCA and to the implicit regularization effects of minibatch SGD on empirical losses.
Meng Liu, Mingda Zhang, Jialu Liu, Hanjun Dai, Ming-Hsuan Yang, Shuiwang Ji, Zheyun Feng, Boqing Gong
tl;dr: We introduce video timeline modeling, provide the YouTube-News-Timeline dataset, propose evaluation metrics, and benchmark baselines.
In this paper, we present a novel problem, namely video timeline modeling. Our objective is to create a video-associated timeline from a set of videos related to a specific topic, thereby facilitating the content and structure understanding of the story being told. This problem has significant potential in various real-world applications, for instance, news story summarization. To bootstrap research in this area, we curate a realistic benchmark dataset, YouTube-News-Timeline, consisting of over $12$k timelines and $300$k YouTube news videos. Additionally, we propose a set of quantitative metrics to comprehensively evaluate and compare methodologies. With such a testbed, we further develop and benchmark several deep learning approaches to tackling this problem. We anticipate that this exploratory work will pave the way for further research in video timeline modeling. The assets are available via https://github.com/google-research/google-research/tree/master/video_timeline_modeling.
Yazhou Zhang, Yang Yu, Qing Guo, Benyou Wang, Dongming Zhao, Sagar Uprety, Dawei Song, Qiuchi Li, Jing Qin
tl;dr: We make the first attempt to annotate the relevance intensity across related affections.
Human communication has a multi-modal and multi-affection nature. The inter-relatedness of different emotions and sentiments poses a challenge to jointly detect multiple human affections with multi-modal clues. Recent advances in this field employed multi-task learning paradigms to render the inter-relatedness across tasks, but the scarcity of publicly available resources sets a limit to the potential of works. To fill this gap, we build the first Chinese Multi-modal Multi-Affection conversation (CMMA) dataset, which contains 3,000 multi-party conversations and 21,795 multi-modal utterances collected from various styles of TV-series. CMMA contains a wide variety of affection labels, including sentiment, emotion, sarcasm and humor, as well as the novel inter-correlations values between certain pairs of tasks. Moreover, it provides the topic and speaker information in conversations, which promotes better modeling of conversational context. On the dataset, we empirically analyze the influence of different data modalities and conversational contexts on different affection analysis tasks, and exhibit the practical benefit of inter-task correlations. The full dataset will be publicly available for research\footnote{https://github.com/annoymity2022/Chinese-Dataset}
Dheeraj Baby, Saurabh Garg, Tzu-Ching Yen, Sivaraman Balakrishnan, Zachary Chase Lipton, Yu-Xiang Wang
tl;dr: In this work, we focused on unsupervised and supervised online label shift settings. For both settings, we developed algorithms with minimax optimal dynamic regret. Experimental results on numerous datasets highlight the effectiveness of our methods.
This paper focuses on supervised and unsupervised online label shift, where the class marginals $Q(y)$ varies but the class-conditionals $Q(x|y)$ remain invariant. In the unsupervised setting, our goal is to adapt a learner, trained on some offline labeled data, to changing label distributions given unlabeled online data. In the supervised setting, we must both learn a classifier and adapt to the dynamically evolving class marginals given only labeled online data. We develop novel algorithms that reduce the adaptation problem to online regression and guarantee optimal dynamic regret without any prior knowledge of the extent of drift in the label distribution. Our solution is based on bootstrapping the estimates of *online regression oracles* that track the drifting proportions. Experiments across numerous simulated and real-world online label shift scenarios demonstrate the superior performance of our proposed approaches, often achieving 1-3% improvement in accuracy while being sample and computationally efficient. Code is publicly available at https://github.com/Anon-djiwh/OnlineLabelShift
Stephanie Fu, Netanel Yakir Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, Phillip Isola
tl;dr: We fit a model of human perception on a synthetic dataset, and show that it aligns better with image attributes that humans are sensitive to.
Current perceptual similarity metrics operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level similarities and differences in image layout, object pose, and semantic content. In this paper, we develop a perceptual metric that assesses images holistically. Our first step is to collect a new dataset of human similarity judgments over image pairs that are alike in diverse ways. Critical to this dataset is that judgments are nearly automatic and shared by all observers. To achieve this we use recent text-to-image models to create synthetic pairs that are perturbed along various dimensions. We observe that popular perceptual metrics fall short of explaining our new data, and we introduce a new metric, DreamSim, tuned to better align with human perception. We analyze how our metric is affected by different visual attributes, and find that it focuses heavily on foreground objects and semantic content while also being sensitive to color and layout. Notably, despite being trained on synthetic data, our metric generalizes to real images, giving strong results on retrieval and reconstruction tasks. Furthermore, our metric outperforms both prior learned metrics and recent large vision models on these tasks. Our project page: https://dreamsim-nights.github.io/
Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, Pradeep Kumar Ravikumar
tl;dr: We prove identifiability of causal representation learning from interventions with general nonlinear mixing functions and unknown, latent interventions, and propose a contrastive learning algorithm to learn it.
We study the problem of learning causal representations from unknown, latent interventions in a general setting, where the latent distribution is Gaussian but the mixing function is completely general. We prove strong identifiability results given unknown single-node interventions, i.e., without having access to the intervention targets. This generalizes prior works which have focused on weaker classes, such as linear maps or paired counterfactual data. This is also the first instance of identifiability from non-paired interventions for deep neural network embeddings and general causal structures. Our proof relies on carefully uncovering the high-dimensional geometric structure present in the data distribution after a non-linear density transformation, which we capture by analyzing quadratic forms of precision matrices of the latent distributions. Finally, we propose a contrastive algorithm to identify the latent variables in practice and evaluate its performance on various tasks.
Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, Colin Raffel
tl;dr: Scaling laws for training LLMs on multiple epochs & code filling + filtering experiments
The current trend of scaling language models involves increasing both parameter count and training dataset size. Extrapolating this trend suggests that training dataset size may soon be limited by the amount of text data available on the internet. Motivated by this limit, we investigate scaling language models in data-constrained regimes. Specifically, we run a large set of experiments varying the extent of data repetition and compute budget, ranging up to 900 billion training tokens and 9 billion parameter models. We find that with constrained data for a fixed compute budget, training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data. However, with more repetition, the value of adding compute eventually decays to zero. We propose and empirically validate a scaling law for compute optimality that accounts for the decreasing value of repeated tokens and excess parameters. Finally, we experiment with approaches mitigating data scarcity, including augmenting the training dataset with code data or removing commonly used filters. Models and datasets from our 400 training runs are freely available at https://github.com/huggingface/datablations.
Hongjie Chen, Vincent Cohen-Addad, Tommaso d'Orsi, Alessandro Epasto, Jacob Imola, David Steurer, Stefan Tiegel
We introduce general tools for designing efficient private estimation algorithms, in the high-dimensional settings, whose statistical guarantees almost match those of the best known non-private algorithms. To illustrate our techniques, we consider two problems: recovery of stochastic block models and learning mixtures of spherical Gaussians. For the former, we present the first efficient $(\epsilon, \delta)$-differentially private algorithm for both weak recovery and exact recovery. Previously known algorithms achieving comparable guarantees required quasi-polynomial time. For the latter, we design an $(\epsilon, \delta)$-differentially private algorithm that recovers the centers of the $k$-mixture when the minimum separation is at least $ O(k^{1/t}\sqrt{t})$. For all choices of $t$, this algorithm requires sample complexity $n\geq k^{O(1)}d^{O(t)}$ and time complexity $(nd)^{O(t)}$. Prior work required either an additional additive $\Omega(\sqrt{\log n})$ term in the minimum separation or an explicit upper bound on the Euclidean norm of the centers.
Rok Roškar, Chandrasekhar Ramakrishnan, Michele Volpi, Fernando Perez-Cruz, Lilian Gasser, Firat Ozdemir, Patrick Paitz, Mohammad Alisafaee, Philipp Fischer, Ralf Grubenmann, Eliza Jean Harris, Tasko Olevski, Carl Remlinger, Luis Salamanca, Elisabet Capon Garcia, Lorenzo Cavazzi, Jakub Chrobasik, Darlin Andrea Cordoba Osnas, Alessandro Degano, Jimena Dupre, Wesley Johnson, Eike Kettner, Laura Kinkead, Sean Murphy, Flora Thiebaut, Olivier Verscheure
tl;dr: Renku is a platform that enables and encourages sustainable data science and machine learning practices, from dataset creation to dissemination.
Data and code working together is fundamental to machine learning (ML), but the context around datasets and interactions between datasets and code are in general captured only rudimentarily. Context such as how the dataset was prepared and created, what source data were used, what code was used in processing, how the dataset evolved, and where it has been used and reused can provide much insight, but this information is often poorly documented. That is unfortunate since it makes datasets into black-boxes with potentially hidden characteristics that have downstream consequences. We argue that making dataset preparation more accessible and dataset usage easier to record and document would have significant benefits for the ML community: it would allow for greater diversity in datasets by inviting modification to published sources, simplify use of alternative datasets and, in doing so, make results more transparent and robust, while allowing for all contributions to be adequately credited. We present a platform, Renku, designed to support and encourage such sustainable development and use of data, datasets, and code, and we demonstrate its benefits through a few illustrative projects which span the spectrum from dataset creation to dataset consumption and showcasing.
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Raghu Meka, Chiyuan Zhang
tl;dr: We give a generic transformation of any item-level DP algorithm to a user-level DP algorithm, that holds even when each user has only a few examples.
Previous work on user-level differential privacy (DP) [Ghazi et al. NeurIPS 2021, Bun et al. STOC 2023] obtained generic algorithms that work for various learning tasks. However, their focus was on the *example-rich* regime, where the users have so many examples that each user could themselves solve the problem. In this work we consider the *example-scarce* regime, where each user has only a few examples, and obtain the following results: * For approximate-DP, we give a generic transformation of any item-level DP algorithm to a user-level DP algorithm. Roughly speaking, the latter gives a (multiplicative) savings of $O_{\varepsilon,\delta}(\sqrt{m})$ in terms of the number of users required for achieving the same utility, where $m$ is the number of examples per user. This algorithm, while recovering most known bounds for specific problems, also gives new bounds, e.g., for PAC learning. * For pure-DP, we present a simple technique for adapting the exponential mechanism [McSherry & Talwar, FOCS 2007] to the user-level setting. This gives new bounds for a variety of tasks, such as private PAC learning, hypothesis selection, and distribution learning. For some of these problems, we show that our bounds are near-optimal.
Kaiwen Wu, Kyurae Kim, Roman Garnett, Jacob R. Gardner
tl;dr: We provide the first convergence rate for a local Bayesian optimization algorithm in both the noisy and noiseless settings.
A recent development in Bayesian optimization is the use of local optimization strategies, which can deliver strong empirical performance on high-dimensional problems compared to traditional global strategies. The "folk wisdom" in the literature is that the focus on local optimization sidesteps the curse of dimensionality; however, little is known concretely about the expected behavior or convergence of Bayesian local optimization routines. We first study the behavior of the local approach, and find that the statistics of individual local solutions of Gaussian process sample paths are surprisingly good compared to what we would expect to recover from global methods. We then present the first rigorous analysis of such a Bayesian local optimization algorithm recently proposed by Müller et al. (2021), and derive convergence rates in both the noisy and noiseless settings.
Mateo Espinosa Zarlenga, Katherine M. Collins, Krishnamurthy Dj Dvijotham, Adrian Weller, Zohreh Shams, Mateja Jamnik
tl;dr: We propose a novel training loss that significantly boosts the performance of a Concept Embedding Model when expert concept interventions are available.
Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by constructing and explaining their predictions using a set of high-level concepts. A special property of these models is that they permit concept interventions, wherein users can correct mispredicted concepts and thus improve the model's performance. Recent work, however, has shown that intervention efficacy can be highly dependent on the order in which concepts are intervened on and on the model's architecture and training hyperparameters. We argue that this is rooted in a CBM's lack of train-time incentives for the model to be appropriately receptive to concept interventions. To address this, we propose Intervention-aware Concept Embedding models (IntCEMs), a novel CBM-based architecture and training paradigm that improves a model's receptiveness to test-time interventions. Our model learns a concept intervention policy in an end-to-end fashion from where it can sample meaningful intervention trajectories at train-time. This conditions IntCEMs to effectively select and receive concept interventions when deployed at test-time. Our experiments show that IntCEMs significantly outperform state-of-the-art concept-interpretable models when provided with test-time concept interventions, demonstrating the effectiveness of our approach.
Samuel Goldman, John Bradshaw, Jiayi Xin, Connor W. Coley
tl;dr: Predicting mass spectra from molecules by first predicting molecular formulae (factorized as an autoregressive prefix tree generation task) and secondly estimating intensities at each formula peak (set2set transformer).
Computational predictions of mass spectra from molecules have enabled the discovery of clinically relevant metabolites. However, such predictive tools are still limited as they occupy one of two extremes, either operating (a) by fragmenting molecules combinatorially with overly rigid constraints on potential rearrangements and poor time complexity or (b) by decoding lossy and nonphysical discretized spectra vectors. In this work, we use a new intermediate strategy for predicting mass spectra from molecules by treating mass spectra as sets of molecular formulae, which are themselves multisets of atoms. After first encoding an input molecular graph, we decode a set of molecular subformulae, each of which specify a predicted peak in the mass spectrum, the intensities of which are predicted by a second model. Our key insight is to overcome the combinatorial possibilities for molecular subformulae by decoding the formula set using a prefix tree structure, atom-type by atom-type, representing a general method for ordered multiset decoding. We show promising empirical results on mass spectra prediction tasks.
Leon Klein, Andrew Y. K. Foong, Tor Erlend Fjelde, Bruno Kacper Mlodozeniec, Marc Brockschmidt, Sebastian Nowozin, Frank Noe, Ryota Tomioka
tl;dr: We learn a transferable flow model that predicts the future state of a molecule to accelerate Molecular Dynamics simulations
*Molecular dynamics* (MD) simulation is a widely used technique to simulate molecular systems, most commonly at the all-atom resolution where equations of motion are integrated with timesteps on the order of femtoseconds ($1\textrm{fs}=10^{-15}\textrm{s}$). MD is often used to compute equilibrium properties, which requires sampling from an equilibrium distribution such as the Boltzmann distribution. However, many important processes, such as binding and folding, occur over timescales of milliseconds or beyond, and cannot be efficiently sampled with conventional MD. Furthermore, new MD simulations need to be performed for each molecular system studied. We present *Timewarp*, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method targeting the Boltzmann distribution. The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $10^{5} - 10^{6} \textrm{fs}$. Crucially, Timewarp is *transferable* between molecular systems: once trained, we show that it generalises to unseen small peptides (2-4 amino acids) at all-atom resolution, exploring their metastable states and providing wall-clock acceleration of sampling compared to standard MD. Our method constitutes an important step towards general, transferable algorithms for accelerating MD.
Fabian Zaiser, Andrzej S Murawski, Luke Ong
We present an exact Bayesian inference method for discrete statistical models, which can find exact solutions to a large class of discrete inference problems, even with infinite support and continuous priors. To express such models, we introduce a probabilistic programming language that supports discrete and continuous sampling, discrete observations, affine functions, (stochastic) branching, and conditioning on discrete events. Our key tool is *probability generating functions*: they provide a compact closed-form representation of distributions that are definable by programs, thus enabling the exact computation of posterior probabilities, expectation, variance, and higher moments. Our inference method is provably correct and fully automated in a tool called *Genfer*, which uses automatic differentiation (specifically, Taylor polynomials), but does not require computer algebra. Our experiments show that Genfer is often faster than the existing exact inference tools PSI, Dice, and Prodigy. On a range of real-world inference problems that none of these exact tools can solve, Genfer's performance is competitive with approximate Monte Carlo methods, while avoiding approximation errors.
Farzad Pourkamali, Nicolas Macris
We consider a statistical model for matrix factorization in a regime where the rank of the two hidden matrix factors grows linearly with their dimension and their product is corrupted by additive noise. Despite various approaches, statistical and algorithmic limits of such problems have remained elusive. We study a Bayesian setting with the assumptions that (a) one of the matrix factors is symmetric, (b) both factors as well as the additive noise have rotational invariant priors, (c) the priors are known to the statistician. We derive analytical formulas for Rotation Invariant Estimators to reconstruct the two matrix factors, and conjecture that these are optimal in the large-dimension limit, in the sense that they minimize the average mean-square-error. We provide numerical checks which confirm the optimality conjecture when confronted to Oracle Estimators which are optimal by definition, but involve the ground-truth. Our derivation relies on a combination of tools, namely random matrix theory transforms, spherical integral formulas, and the replica method from statistical mechanics.
Tim Kucera, Carlos Oliver, Dexiong Chen, Karsten Borgwardt
tl;dr: Datasets and evaluation tasks for protein 3D structure data.
We present ProteinShake, a Python software package that simplifies dataset creation and model evaluation for deep learning on protein structures. Users can create custom datasets or load an extensive set of pre-processed datasets from the Protein Data Bank (PDB) and AlphaFoldDB. Each dataset is associated with prediction tasks and evaluation functions covering a broad array of biological challenges. A benchmark on these tasks shows that pre-training almost always improves performance, the optimal data modality (graphs, voxel grids, or point clouds) is task-dependent, and models struggle to generalize to new structures. ProteinShake makes protein structure data easily accessible and comparison among models straightforward, providing challenging benchmark settings with real-world implications. ProteinShake is available at: https://proteinshake.ai
Constantine Caramanis, Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, Christos Tzamos
tl;dr: We theoretically study the problem of optimizing solution-samplers for combinatorial problems via gradient-based methods.
Deep Neural Networks and Reinforcement Learning methods have empirically shown great promise in tackling challenging combinatorial problems. In those methods a deep neural network is used as a solution generator which is then trained by gradient-based methods (e.g., policy gradient) to successively obtain better solution distributions. In this work we introduce a novel theoretical framework for analyzing the effectiveness of such methods. We ask whether there exist generative models that (i) are expressive enough to generate approximately optimal solutions; (ii) have a tractable, i.e, polynomial in the size of the input, number of parameters; (iii) their optimization landscape is benign in the sense that it does not contain sub-optimal stationary points. Our main contribution is a positive answer to this question. Our result holds for a broad class of combinatorial problems including Max- and Min-Cut, Max-$k$-CSP, Maximum-Weight-Bipartite-Matching, and the Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel regularization process over vanilla gradient descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
Ilias Diakonikolas, Daniel Kane, Jasper C.H. Lee, Ankit Pensia, Thanasis Pittas
tl;dr: We give a sum-of-squares-free polynomial time algorithm for list-decodable Gaussian covariance estimation in relative Frobenius norm
We study the problem of list-decodable Gaussian covariance estimation. Given a multiset $T$ of $n$ points in $\mathbb{R}^d$ such that an unknown $\alpha<1/2$ fraction of points in $T$ are i.i.d. samples from an unknown Gaussian $\mathcal{N}(\mu, \Sigma)$, the goal is to output a list of $O(1/\alpha)$ hypotheses at least one of which is close to $\Sigma$ in relative Frobenius norm. Our main result is a $\mathrm{poly}(d,1/\alpha)$ sample and time algorithm for this task that guarantees relative Frobenius norm error of $\mathrm{poly}(1/\alpha)$. Importantly, our algorithm relies purely on spectral techniques. As a corollary, we obtain an efficient spectral algorithm for robust partial clustering of Gaussian mixture models (GMMs) --- a key ingredient in the recent work of [BakDJKKV22] on robustly learning arbitrary GMMs. Combined with the other components of [BakDJKKV22], our new method yields the first Sum-of-Squares-free algorithm for robustly learning GMMs, resolving an open problem proposed by Vempala and Kothari. At the technical level, we develop a novel multi-filtering method for list-decodable covariance estimation that may be useful in other settings.
Matthew Jagielski, Milad Nasr, Katherine Lee, Christopher A. Choquette-Choo, Nicholas Carlini, Florian Tramèr
tl;dr: Model distillation is not resistant to strong membership inference attacks, and we investigate why.
Model distillation is frequently proposed as a technique to reduce the privacy leakage of machine learning. These empirical privacy defenses rely on the intuition that distilled ``student'' models protect the privacy of training data, as they only interact with this data indirectly through a ``teacher'' model. In this work, we design membership inference attacks to systematically study the privacy provided by knowledge distillation to both the teacher and student training sets. Our new attacks show that distillation alone provides only limited privacy across a number of domains. We explain the success of our attacks on distillation by showing that membership inference attacks on a private dataset can succeed even if the target model is never queried on any actual training points, but only on inputs whose predictions are highly influenced by training data. Finally, we show that our attacks are strongest when student and teacher sets are similar, or when the attacker can poison the teacher set.
Peter Hase, Mohit Bansal, Been Kim, Asma Ghandeharioun
Language models learn a great quantity of factual information during pretraining, and recent work localizes this information to specific model weights like mid-layer MLP weights. In this paper, we find that we can change how a fact is stored in a model by editing weights that are in a different location than where existing methods suggest that the fact is stored. This is surprising because we would expect that localizing facts to specific model parameters would tell us where to manipulate knowledge in models, and this assumption has motivated past work on model editing methods. Specifically, we show that localization conclusions from representation denoising (also known as Causal Tracing) do not provide any insight into which model MLP layer would be best to edit in order to override an existing stored fact with a new one. This finding raises questions about how past work relies on Causal Tracing to select which model layers to edit. Next, we consider several variants of the editing problem, including erasing and amplifying facts. For one of our editing problems, editing performance does relate to localization results from representation denoising, but we find that which layer we edit is a far better predictor of performance. Our results suggest, counterintuitively, that better mechanistic understanding of how pretrained language models work may not always translate to insights about how to best change their behavior.
Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, Yulia Tsvetkov
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question.
Thomas Steinke, Milad Nasr, Matthew Jagielski
tl;dr: We show how to compute lower bounds on the privacy parameters of an algorithm with only one run of that algorithm.
We propose a scheme for auditing differentially private machine learning systems with a single training run. This exploits the parallelism of being able to add or remove multiple training examples independently. We analyze this using the connection between differential privacy and statistical generalization, which avoids the cost of group privacy. Our auditing scheme requires minimal assumptions about the algorithm and can be applied in the black-box or white-box setting. We demonstrate the effectiveness of our framework by applying it to DP-SGD, where we can achieve meaningful empirical privacy lower bounds by training only one model. In contrast, standard methods would require training hundreds of models.
Diederik P Kingma, Ruiqi Gao
tl;dr: We develop a theoretical understanding of the training objective of diffusion models as a the ELBOs subject to data augmentation.
To achieve the highest perceptual quality, state-of-the-art diffusion models are optimized with objectives that typically look very different from the maximum likelihood and the Evidence Lower Bound (ELBO) objectives. In this work, we reveal that diffusion model objectives are actually closely related to the ELBO. Specifically, we show that all commonly used diffusion model objectives equate to a weighted integral of ELBOs over different noise levels, where the weighting depends on the specific objective used. Under the condition of monotonic weighting, the connection is even closer: the diffusion objective then equals the ELBO, combined with simple data augmentation, namely Gaussian noise perturbation. We show that this condition holds for a number of state-of-the-art diffusion models. In experiments, we explore new monotonic weightings and demonstrate their effectiveness, achieving state-of-the-art FID scores on the high-resolution ImageNet benchmark.
Karttikeya Mangalam, Raiymbek Akshulakov, Jitendra Malik
tl;dr: We propose EgoSchema, a new very long-form video question answering dataset, offering over 5000 multiple-choice questions over which current SOTA models achieve accuracies less than 33% on 0-shot question answering, while humans achieve about 76%.
We introduce EgoSchema, a very long-form video question-answering dataset, and benchmark to evaluate long video understanding capabilities of modern vision and language systems. Derived from Ego4D, EgoSchema consists of over 5000 human curated multiple choice question answer pairs, spanning over 250 hours of real video data, covering a very broad range of natural human activity and behavior. For each question, EgoSchema requires the correct answer to be selected between five given options based on a three-minute-long video clip. While some prior works have proposed video datasets with long clip lengths, we posit that merely the length of the video clip does not truly capture the temporal difficulty of the video task that is being considered. To remedy this, we introduce temporal certificate sets, a general notion for capturing the intrinsic temporal understanding length associated with a broad range of video understanding tasks & datasets. Based on this metric, we find EgoSchema to have intrinsic temporal lengths over 5.7x longer than the second closest dataset and 10x to 100x longer than any other video understanding dataset. Further, our evaluation of several current state-of-the-art video and language models shows them to be severely lacking in long-term video understanding capabilities. Even models with several billions of parameters achieve QA accuracy less than 33% (random is 20%) on the EgoSchema multi-choice question answering task, while humans achieve about 76% accuracy. We posit that EgoSchema, with its long intrinsic temporal structures and diverse complexity, would serve as a valuable evaluation probe for developing effective long-term video understanding systems in the future. Data and Zero-shot model evaluation code will all be open-sourced under the Ego4D license at http://egoschema.github.io.
Shibo Hao, Tianyang Liu, Zhen Wang, Zhiting Hu
tl;dr: We propose to use tool embeddings to augment large language models with tools
Integrating large language models (LLMs) with various tools has led to increased attention in the field. Existing approaches either involve fine-tuning the LLM, which is both computationally costly and limited to a fixed set of tools, or prompting LLMs by in-context tool demonstrations. Although the latter method offers adaptability to new tools, it struggles with the inherent context length constraint of LLMs when many new tools are presented, and mastering a new set of tools with few-shot examples remains challenging, resulting in suboptimal performance. To address these limitations, we propose a novel solution, named **ToolkenGPT**, wherein LLMs effectively learn to master tools as predicting tokens through **tool embeddings** for solving complex tasks. In this framework, each tool is transformed into vector embeddings and plugged into the language model head. Once the function is triggered during text generation, the LLM enters a special function mode to execute the tool calls. Our experiments show that function embeddings effectively help LLMs understand tool use and improve on several tasks, including numerical reasoning, knowledge-based question answering and embodied decision-making.
Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hannaneh Hajishirzi
In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied by limited evaluation, making it difficult to compare models across the board and determine the utility of various resources. We provide a large set of instruction-tuned models from 6.7B to 65B parameters in size, trained on 12 instruction datasets ranging from manually curated (e.g., OpenAssistant) to synthetic and distilled (e.g., Alpaca) and systematically evaluate them on their factual knowledge, reasoning, multilinguality, coding, safety, and open-ended instruction following abilities through a collection of automatic, model-based, and human-based metrics. We further introduce Tülu, our best performing instruction-tuned model suite finetuned on a combination of high-quality open resources. Our experiments show that different instruction-tuning datasets can uncover or enhance specific skills, while no single dataset (or combination) provides the best performance across all evaluations. Interestingly, we find that model and human preference-based evaluations fail to reflect differences in model capabilities exposed by benchmark-based evaluations, suggesting the need for the type of systemic evaluation performed in this work. Our evaluations show that the best model in any given evaluation reaches on average 87% of ChatGPT performance, and 73% of GPT-4 performance, suggesting that further investment in building better base models and instruction-tuning data is required to close the gap. We release our instruction-tuned models, including a fully finetuned 65B Tülu, along with our code, data, and evaluation framework to facilitate future research.
Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, Sanjeev Arora
Fine-tuning language models (LMs) has yielded success on diverse downstream tasks, but as LMs grow in size, backpropagation requires a prohibitively large amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients using only two forward passes but are theorized to be catastrophically slow for optimizing large models. In this work, we propose a memory-efficient zerothorder optimizer (MeZO), adapting the classical ZO-SGD method to operate in-place, thereby fine-tuning LMs with the same memory footprint as inference. For example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter model, whereas fine-tuning with backpropagation can train only a 2.7B LM with the same budget. We conduct comprehensive experiments across model types (masked and autoregressive LMs), model scales (up to 66B), and downstream tasks (classification, multiple-choice, and generation). Our results demonstrate that (1) MeZO significantly outperforms in-context learning and linear probing; (2) MeZO achieves comparable performance to fine-tuning with backpropagation across multiple tasks, with up to 12× memory reduction and up to 2× GPU-hour reduction in our implementation; (3) MeZO is compatible with both full-parameter and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4) MeZO can effectively optimize non-differentiable objectives (e.g., maximizing accuracy or F1). We support our empirical findings with theoretical insights, highlighting how adequate pre-training and task prompts enable MeZO to fine-tune huge models, despite classical ZO analyses suggesting otherwise.
Michael Sejr Schlichtkrull, Zhijiang Guo, Andreas Vlachos
tl;dr: The paper introduces a novel dataset for real-world fact-checking that provides both question-answer decomposition and justifications, and avoids issues of context dependence, evidence insufficiency, and temporal leakage.
Existing datasets for automated fact-checking have substantial limitations, such as relying on artificial claims, lacking annotations for evidence and intermediate reasoning, or including evidence published after the claim. In this paper we introduce AVeriTeC, a new dataset of 4,568 real-world claims covering fact-checks by 50 different organizations. Each claim is annotated with question-answer pairs supported by evidence available online, as well as textual justifications explaining how the evidence combines to produce a verdict. Through a multi-round annotation process, we avoid common pitfalls including context dependence, evidence insufficiency, and temporal leakage, and reach a substantial inter-annotator agreement of $\kappa=0.619$ on verdicts. We develop a baseline as well as an evaluation scheme for verifying claims through question-answering against the open web.
Zitong Chen, Chau Pham, Siqi Wang, Michael Doron, Nikita Moshkov, Bryan A. Plummer, Juan C Caicedo
tl;dr: We present a benchmark suite and a dataset for investigating channel-adaptive models that are invariant to the number and type of channels. We also propose five channel-adaptive strategies and evaluate them using the CHAMMI benchmark.
Most neural networks assume that input images have a fixed number of channels (three for RGB images). However, there are many settings where the number of channels may vary, such as microscopy images where the number of channels changes depending on instruments and experimental goals. Yet, there has not been a systemic attempt to create and evaluate neural networks that are invariant to the number and type of channels. As a result, trained models remain specific to individual studies and are hardly reusable for other microscopy settings. In this paper, we present a benchmark for investigating channel-adaptive models in microscopy imaging, which consists of 1) a dataset of varied-channel single-cell images, and 2) a biologically relevant evaluation framework. In addition, we adapted several existing techniques to create channel-adaptive models and compared their performance on this benchmark to fixed-channel, baseline models. We find that channel-adaptive models can generalize better to out-of-domain tasks and can be computationally efficient. We contribute a curated dataset and an evaluation API to facilitate objective comparisons in future research and applications.
Tushar Nagarajan, Santhosh Kumar Ramakrishnan, Ruta Desai, James Hillis, Kristen Grauman
tl;dr: We learn "environment-aware" ego-video representations that encode not just a short 1-2s clip, but also the local surroundings of the camera-wearer (e.g., what objects are nearby, how far are they).
First-person video highlights a camera-wearer's activities in the context of their persistent environment. However, current video understanding approaches reason over visual features from short video clips that are detached from the underlying physical space and capture only what is immediately visible. To facilitate human-centric environment understanding, we present an approach that links egocentric video and the environment by learning representations that are predictive of the camera-wearer's (potentially unseen) local surroundings. We train such models using videos from agents in simulated 3D environments where the environment is fully observable, and test them on human-captured real-world videos from unseen environments. On two human-centric video tasks, we show that models equipped with our environment-aware features consistently outperform their counterparts with traditional clip features. Moreover, despite being trained exclusively on simulated videos, our approach successfully handles real-world videos from HouseTours and Ego4D, and achieves state-of-the-art results on the Ego4D NLQ challenge.
Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvari, Dale Schuurmans
tl;dr: PG method converges whenever there exists an adequate linear function that ranks actions in the same order as the ground-truth reward function.
We prove that, for finite-arm bandits with linear function approximation, the global convergence of policy gradient (PG) methods depends on inter-related properties between the policy update and the representation. textcolor{blue}{First}, we establish a few key observations that frame the study: \textbf{(i)} Global convergence can be achieved under linear function approximation without policy or reward realizability, both for the standard Softmax PG and natural policy gradient (NPG). \textbf{(ii)} Approximation error is not a key quantity for characterizing global convergence in either algorithm. \textbf{(iii)} The conditions on the representation that imply global convergence are different between these two algorithms. Overall, these observations call into question approximation error as an appropriate quantity for characterizing the global convergence of PG methods under linear function approximation. \textcolor{blue}{Second}, motivated by these observations, we establish new general results: \textbf{(i)} NPG with linear function approximation achieves global convergence \emph{if and only if} the projection of the reward onto the representable space preserves the optimal action's rank, a quantity that is not strongly related to approximation error. \textbf{(ii)} The global convergence of Softmax PG occurs if the representation satisfies a non-domination condition and can preserve the ranking of rewards, which goes well beyond policy or reward realizability. We provide experimental results to support these theoretical findings.
Asanobu Kitamoto, Jared Hwang, Bastien Vuillod, Lucas Gautier, Yingtao Tian, Tarin Clanuwat
tl;dr: The Digital Typhoon dataset, a 40+ year-long, high-quality typhoon satellite image dataset, is released for machine learning research on tropical cyclones.
This paper presents the official release of the Digital Typhoon dataset, the longest typhoon satellite image dataset for 40+ years aimed at benchmarking machine learning models for long-term spatio-temporal data. To build the dataset, we developed a workflow to create an infrared typhoon-centered image for cropping using Lambert azimuthal equal-area projection referring to the best track data. We also address data quality issues such as inter-satellite calibration to create a homogeneous dataset. To take advantage of the dataset, we organized machine learning tasks by the types and targets of inference, with other tasks for meteorological analysis, societal impact, and climate change. The benchmarking results on the analysis, forecasting, and reanalysis for the intensity suggest that the dataset is challenging for recent deep learning models, due to many choices that affect the performance of various models. This dataset reduces the barrier for machine learning researchers to meet large-scale real-world events called tropical cyclones and develop machine learning models that may contribute to advancing scientific knowledge on tropical cyclones as well as solving societal and sustainability issues such as disaster reduction and climate change. The dataset is publicly available at http://agora.ex.nii.ac.jp/digital-typhoon/dataset/ and https://github.com/kitamoto-lab/digital-typhoon/.
Xiaoyu Tian, Tao Jiang, Longfei Yun, Yucheng Mao, Huitong Yang, Yue Wang, Yilun Wang, Hang Zhao
Robotic perception requires the modeling of both 3D geometry and semantics. Existing methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details and struggling to handle general, out-of-vocabulary objects. 3D occupancy prediction, which estimates the detailed occupancy states and semantics of a scene, is an emerging task to overcome these limitations. To support 3D occupancy prediction, we develop a label generation pipeline that produces dense, visibility-aware labels for any given scene. This pipeline comprises three stages: voxel densification, occlusion reasoning, and image-guided voxel refinement. We establish two benchmarks, derived from the Waymo Open Dataset and the nuScenes Dataset, namely Occ3D-Waymo and Occ3D-nuScenes benchmarks. Furthermore, we provide an extensive analysis of the proposed dataset with various baseline models. Lastly, we propose a new model, dubbed Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior performance on the Occ3D benchmarks.The code, data, and benchmarks are released at \url{https://tsinghua-mars-lab.github.io/Occ3D/}.
Alicia Curth, Alan Jeffares, Mihaela van der Schaar
tl;dr: By demonstrating that the double descent shape observed in recent studies of non-deep ML methods is a direct consequence of the x-axes used to present it, we provide a resolution to the tension between statistical intuition and double descent.
Conventional statistical wisdom established a well-understood relationship between model complexity and prediction error, typically presented as a _U-shaped curve_ reflecting a transition between under- and overfitting regimes. However, motivated by the success of overparametrized neural networks, recent influential work has suggested this theory to be generally incomplete, introducing an additional regime that exhibits a second descent in test error as the parameter count $p$ grows past sample size $n$ -- a phenomenon dubbed _double descent_. While most attention has naturally been given to the deep-learning setting, double descent was shown to emerge more generally across non-neural models: known cases include _linear regression, trees, and boosting_. In this work, we take a closer look at the evidence surrounding these more classical statistical machine learning methods and challenge the claim that observed cases of double descent truly extend the limits of a traditional U-shaped complexity-generalization curve therein. We show that once careful consideration is given to _what is being plotted_ on the x-axes of their double descent plots, it becomes apparent that there are implicitly multiple, distinct complexity axes along which the parameter count grows. We demonstrate that the second descent appears exactly (and _only_) when and where the transition between these underlying axes occurs, and that its location is thus _not_ inherently tied to the interpolation threshold $p=n$. We then gain further insight by adopting a classical nonparametric statistics perspective. We interpret the investigated methods as _smoothers_ and propose a generalized measure for the _effective_ number of parameters they use _on unseen examples_, using which we find that their apparent double descent curves do indeed fold back into more traditional convex shapes -- providing a resolution to the ostensible tension between double descent and traditional statistical intuition.
Yuchen Yan, Baoyu Jing, Lihui Liu, Ruijie Wang, Jinning Li, Tarek Abdelzaher, Hanghang Tong
Network embedding plays a significant role in a variety of applications. To capture the topology of the network, most of the existing network embedding algorithms follow a sampling training procedure, which maximizes the similarity (e.g., embedding vectors' dot product) between positively sampled node pairs and minimizes the similarity between negatively sampled node pairs in the embedding space. Typically, close node pairs function as positive samples while distant node pairs are usually considered as negative samples. However, under different or even competing sampling strategies, some methods champion sampling distant node pairs as positive samples to encapsulate longer distance information in link prediction, whereas others advocate adding close nodes into the negative sample set to boost the performance of node recommendation. In this paper, we seek to understand the intrinsic relationships between these competing strategies. To this end, we identify two properties (discrimination and monotonicity) that given any node pair proximity distribution, node embeddings should embrace. Moreover, we quantify the empirical error of the trained similarity score w.r.t. the sampling strategy, which leads to an important finding that the discrimination property and the monotonicity property for all node pairs can not be satisfied simultaneously in real-world applications. Guided by such analysis, a simple yet novel model (SENSEI) is proposed, which seamlessly fulfills the discrimination property and the partial monotonicity within the top-$K$ ranking list. Extensive experiments show that SENSEI outperforms the state-of-the-arts in plain network embedding.
David Xing Wu, Anant Sahai
We study the asymptotic generalization of an overparameterized linear model for multiclass classification under the Gaussian covariates bi-level model introduced in Subramanian et al. (NeurIPS'22), where the number of data points, features, and classes all grow together. We fully resolve the conjecture posed in Subramanian et al. '22, matching the predicted regimes for which the model does and does not generalize. Furthermore, our new lower bounds are akin to an information-theoretic strong converse: they establish that the misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of our tight results is that the min-norm interpolating classifier can be asymptotically suboptimal relative to noninterpolating classifiers in the regime where the min-norm interpolating regressor is known to be optimal. The key to our tight analysis is a new variant of the Hanson-Wright inequality which is broadly useful for multiclass problems with sparse labels. As an application, we show that the same type of analysis can be used to analyze the related multi-label classification problem under the same bi-level ensemble.
Tal Amir, Steven J. Gortler, Ilai Avni, Ravina Ravina, Nadav Dym
tl;dr: We show that using analytic activations, one can construct finite-size NNs that are injective on multisets and discrete measures. As corollaries, we improve known results on approximation of multiset functions, and on equivalence of GNNs and WL tests
Injective multiset functions have a key role in the theoretical study of machine learning on multisets and graphs. Yet, there remains a gap between the provably injective multiset functions considered in theory, which typically rely on polynomial moments, and the multiset functions used in practice, which rely on $\textit{neural moments}$ — whose injectivity on multisets has not been studied to date. In this paper, we bridge this gap by showing that moments of neural networks do define injective multiset functions, provided that an analytic non-polynomial activation is used. The number of moments required by our theory is optimal essentially up to a multiplicative factor of two. To prove this result, we state and prove a $\textit{finite witness theorem}$, which is of independent interest. As a corollary to our main theorem, we derive new approximation results for functions on multisets and measures, and new separation results for graph neural networks. We also provide two negative results: (1) moments of piecewise-linear neural networks cannot be injective multiset functions; and (2) even when moment-based multiset functions are injective, they can never be bi-Lipschitz.
Jiaqi Liu, Guoyang Xie, ruitao chen, Xinpeng Li, Jinbao Wang, Yong Liu, Chengjie Wang, Feng Zheng
tl;dr: A new dataset for industrial anomaly detection.
High-precision point cloud anomaly detection is the gold standard for identifying the defects of advancing machining and precision manufacturing. Despite some methodological advances in this area, the scarcity of datasets and the lack of a systematic benchmark hinder its development. We introduce Real3D-AD, a challenging high-precision point cloud anomaly detection dataset, addressing the limitations in the field. With 1,254 high-resolution 3D items (from forty thousand to millions of points for each item), Real3D-AD is the largest dataset for high-precision 3D industrial anomaly detection to date. Real3D-AD surpasses existing 3D anomaly detection datasets available in terms of point cloud resolution (0.0010mm-0.0015mm), $360^{\circ}$ degree coverage and perfect prototype. Additionally, we present a comprehensive benchmark for Real3D-AD, revealing the absence of baseline methods for high-precision point cloud anomaly detection. To address this, we propose Reg3D-AD, a registration-based 3D anomaly detection method incorporating a novel feature memory bank that preserves local and global representations. Extensive experiments on the Real3D-AD dataset highlight the effectiveness of Reg3D-AD. For reproducibility and accessibility, we provide the Real3D-AD dataset, benchmark source code, and Reg3D-AD on our website: https://github.com/M-3LAB/Real3D-AD.
Tao Lin, Yiling Chen
tl;dr: We give the first sample complexity result for the classical Bayesian forecast aggregation problem.
We consider a Bayesian forecast aggregation model where $n$ experts, after observing private signals about an unknown binary event, report their posterior beliefs about the event to a principal, who then aggregates the reports into a single prediction for the event. The signals of the experts and the outcome of the event follow a joint distribution that is unknown to the principal, but the principal has access to i.i.d. "samples" from the distribution, where each sample is a tuple of the experts' reports (not signals) and the realization of the event. Using these samples, the principal aims to find an $\varepsilon$-approximately optimal aggregator, where optimality is measured in terms of the expected squared distance between the aggregated prediction and the realization of the event. We show that the sample complexity of this problem is at least $\tilde \Omega(m^{n-2} / \varepsilon)$ for arbitrary discrete distributions, where $m$ is the size of each expert's signal space. This sample complexity grows exponentially in the number of experts $n$. But, if the experts' signals are independent conditioned on the realization of the event, then the sample complexity is significantly reduced, to $\tilde O(1 / \varepsilon^2)$, which does not depend on $n$. Our results can be generalized to non-binary events. The proof of our results uses a reduction from the distribution learning problem and reveals the fact that forecast aggregation is almost as difficult as distribution learning.
Lore Goetschalckx, Lakshmi Narasimhan Govindarajan, Alekh Karkada Ashok, Aarit Ahuja, David Sheinberg, Thomas Serre
The meteoric rise in the adoption of deep neural networks as computational models of vision has inspired efforts to ``align” these models with humans. One dimension of interest for alignment includes behavioral choices, but moving beyond characterizing choice patterns to capturing temporal aspects of visual decision-making has been challenging. Here, we sketch a general-purpose methodology to construct computational accounts of reaction times from a stimulus-computable, task-optimized model. Specifically, we introduce a novel metric leveraging insights from subjective logic theory summarizing evidence accumulation in recurrent vision models. We demonstrate that our metric aligns with patterns of human reaction times for stimulus manipulations across four disparate visual decision-making tasks spanning perceptual grouping, mental simulation, and scene categorization. This work paves the way for exploring the temporal alignment of model and human visual strategies in the context of various other cognitive tasks toward generating testable hypotheses for neuroscience. Links to the code and data can be found on the project page: https://serre-lab.github.io/rnn_rts_site/.
Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, Subbarao Kambhampati
Intrigued by the claims of emergent reasoning capabilities in LLMs trained on general web corpora, in this paper, we set out to investigate their planning capabilities. We aim to evaluate (1) the effectiveness of LLMs in generating plans autonomously in commonsense planning tasks and (2) the potential of LLMs as a source of heuristic guidance for other agents (AI planners) in their planning tasks. We conduct a systematic study by generating a suite of instances on domains similar to the ones employed in the International Planning Competition and evaluate LLMs in two distinct modes: autonomous and heuristic. Our findings reveal that LLMs’ ability to generate executable plans autonomously is rather limited, with the best model (GPT-4) having an average success rate of ~12% across the domains. However, the results in the heuristic mode show more promise. In the heuristic mode, we demonstrate that LLM-generated plans can improve the search process for underlying sound planners and additionally show that external verifiers can help provide feedback on the generated plans and back-prompt the LLM for better plan generation.
Andrew Kyle Lampinen, Stephanie C.Y. Chan, Ishita Dasgupta, Andrew Joo Hun Nam, Jane X Wang
tl;dr: We show formally and empirically (through experiments with BC agents and language models) that it is possible to learn generalize strategies for causal experimentation and goal seeking from purely passive imitation learning.
What can be learned about causality and experimentation from passive data? This question is salient given recent successes of passively-trained language models in interactive domains such as tool use. Passive learning is inherently limited. However, we show that purely passive learning can in fact allow an agent to learn generalizable strategies for determining and using causal structures, as long as the agent can intervene at test time. We formally illustrate that learning a strategy of first experimenting, then seeking goals, can allow generalization from passive learning in principle. We then show empirically that agents trained via imitation on expert data can indeed generalize at test time to infer and use causal links which are never present in the training data; these agents can also generalize experimentation strategies to novel variable sets never observed in training. We then show that strategies for causal intervention and exploitation can be generalized from passive data even in a more complex environment with high-dimensional observations, with the support of natural language explanations. Explanations can even allow passive learners to generalize out-of-distribution from perfectly-confounded training data. Finally, we show that language models, trained only on passive next-word prediction, can generalize causal intervention strategies from a few-shot prompt containing explanations and reasoning. These results highlight the surprising power of passive learning of active causal strategies, and have implications for understanding the behaviors and capabilities of language models.
Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Shikha Singh
tl;dr: This paper gives a theoretical analysis of a list labeling data structure in the learning augmented algorithm competitive analysis model.
A growing line of work shows how learned predictions can be used to break through worst-case barriers to improve the running time of an algorithm. However, incorporating predictions into data structures with strong theoretical guarantees remains underdeveloped. This paper takes a step in this direction by showing that predictions can be leveraged in the fundamental online list labeling problem. In the problem, $n$ items arrive over time and must be stored in sorted order in an array of size $\Theta(n)$. The array slot of an element is its label and the goal is to maintain sorted order while minimizing the total number of elements moved (i.e., relabeled). We design a new list labeling data structure and bound its performance in two models. In the worst-case learning-augmented model, we give guarantees in terms of the error in the predictions. Our data structure provides strong guarantees: it is optimal for any prediction error and guarantees the best-known worst-case bound even when the predictions are entirely erroneous. We also consider a stochastic error model and bound the performance in terms of the expectation and variance of the error. Finally, the theoretical results are demonstrated empirically. In particular, we show that our data structure has strong performance on real temporal data sets where predictions are constructed from elements that arrived in the past, as is typically done in a practical use case.
Shengran Hu, Jeff Clune
tl;dr: We introduce Thought Cloning, a novel imitation learning framework that enhances agent capability, AI Safety, and Interpretability by training agents to think like humans.
Language is often considered a key aspect of human thinking, providing us with exceptional abilities to generalize, explore, plan, replan, and adapt to new situations. However, Reinforcement Learning (RL) agents are far from human-level performance in any of these abilities. We hypothesize one reason for such cognitive deficiencies is that they lack the benefits of thinking in language and that we can improve AI agents by training them to $\textit{think like humans do}$. We introduce a novel Imitation Learning framework, Thought Cloning, where the idea is to not just clone the behaviors of human demonstrators, $\textit{but also the thoughts humans have as they perform these behaviors}$. While we expect Thought Cloning to truly shine at scale on internet-sized datasets (e.g. online videos with transcripts), here we conduct experiments in a domain where the thinking and action data are synthetically generated. Results reveal that Thought Cloning learns much faster than Behavioral Cloning and its performance advantage grows the further out of distribution test tasks are, highlighting its ability to better handle novel situations. Thought Cloning also provides important benefits for AI Safety and Interpretability, and makes it easier to debug and improve AI. Because we can observe the agent’s thoughts, we can (1) more easily diagnose why things are going wrong, making it easier to fix the problem, (2) steer the agent by correcting its thinking, or (3) prevent it from doing unsafe things it plans to do. Overall, by training agents $\textit{how to think}$ as well as behave, Thought Cloning creates safer, more powerful agents.
Ben Prystawski, Michael Y. Li, Noah Goodman
tl;dr: Chain-of-thought reasoning is effective in autoregressive language models because of the local structure of the training data.
Humans have a powerful and mysterious capacity to reason. Working through a set of mental steps enables us to make inferences we would not be capable of making directly even though we get no additional data from the world. Similarly, when large language models generate intermediate steps (a chain of thought) before answering a question, they often produce better answers than they would directly. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of overlapping local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables reduces bias, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis experimentally in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models’ ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables. The combination of locally structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
Lora Aroyo, Alex Taylor, Mark Diaz, Christopher M Homan, Alicia Parrish, Greg Serapio-Garcia, Vinodkumar Prabhakaran, Ding Wang
tl;dr: Safe AI is a better AI for Everyone. But everyone has different perceptions of safety. The DICES dataset offers a shared resource to understand these differences and benchmark safety evaluation for conversational AI systems
Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This requirement overly simplifies the natural subjectivity present in many tasks, and obscures the inherent diversity in human perceptions and opinions about many content items. Preserving the variance in content and diversity in human perceptions in datasets is often quite expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is socio-culturally situated in this context. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographics information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. The DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of safety for conversational AI. We further describe a set of metrics that show how rater diversity influences safety perception across different geographic regions, ethnicity groups, age groups, and genders. The goal of the DICES dataset is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems.
Aravind Gollakota, Adam Klivans, Konstantinos Stavropoulos, Arsen Vasilyan
We give the first tester-learner for halfspaces that succeeds universally over a wide class of structured distributions. Our universal tester-learner runs in fully polynomial time and has the following guarantee: the learner achieves error $O(\mathrm{opt}) + \epsilon$ on any labeled distribution that the tester accepts, and moreover, the tester accepts whenever the marginal is any distribution that satisfies a Poincare inequality. In contrast to prior work on testable learning, our tester is not tailored to any single target distribution but rather succeeds for an entire target class of distributions. The class of Poincare distributions includes all strongly log-concave distributions, and, assuming the Kannan--Lovasz--Simonovits (KLS) conjecture, includes all log-concave distributions. In the special case where the label noise is known to be Massart, our tester-learner achieves error $\mathrm{opt} + \epsilon$ while accepting all log-concave distributions unconditionally (without assuming KLS). Our tests rely on checking hypercontractivity of the unknown distribution using a sum-of-squares (SOS) program, and crucially make use of the fact that Poincare distributions are certifiably hypercontractive in the SOS framework.
Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, Ranjay Krishna
tl;dr: We show that existing benchmarks for vision-language compositionality are hackable. We present SugarCrepe, a new benchmark that remedies this vulnerability to faithfully evaluate a vision-language model's compositionality.
In the last year alone, a surge of new benchmarks to measure $\textit{compositional}$ understanding of vision-language models have permeated the machine learning ecosystem. Given an image, these benchmarks probe a model's ability to identify its associated caption amongst a set of compositional distractors. Surprisingly, we find significant biases in $\textit{all}$ these benchmarks rendering them hackable. This hackability is so dire that blind models with no access to the image outperform state-of-the-art vision-language models. To remedy this rampant vulnerability, we introduce $\textit{SugarCrepe}$, a new benchmark for vision-language compositionality evaluation. We employ large language models, instead of rule-based templates used in previous benchmarks, to generate fluent and sensical hard negatives, and utilize an adversarial refinement mechanism to maximally reduce biases. We re-evaluate state-of-the-art models and recently proposed compositionality inducing strategies, and find that their improvements were hugely overestimated, suggesting that more innovation is needed in this important direction. We release $\textit{SugarCrepe}$ and the code for evaluation at: https://github.com/RAIVNLab/sugar-crepe.
Paul Viallard, Maxime Haddouche, Umut Simsekli, Benjamin Guedj
Minimising upper bounds on the population risk or the generalisation gap has been widely used in structural risk minimisation (SRM) -- this is in particular at the core of PAC-Bayesian learning. Despite its successes and unfailing surge of interest in recent years, a limitation of the PAC-Bayesian framework is that most bounds involve a Kullback-Leibler (KL) divergence term (or its variations), which might exhibit erratic behavior and fail to capture the underlying geometric structure of the learning problem -- hence restricting its use in practical applications. As a remedy, recent studies have attempted to replace the KL divergence in the PAC-Bayesian bounds with the Wasserstein distance. Even though these bounds alleviated the aforementioned issues to a certain extent, they either hold in expectation, are for bounded losses, or are nontrivial to minimize in an SRM framework. In this work, we contribute to this line of research and prove novel Wasserstein distance-based PAC-Bayesian generalisation bounds for both batch learning with independent and identically distributed (i.i.d.) data, and online learning with potentially non-i.i.d. data. Contrary to previous art, our bounds are stronger in the sense that (i) they hold with high probability, (ii) they apply to unbounded (potentially heavy-tailed) losses, and (iii) they lead to optimizable training objectives that can be used in SRM. As a result we derive novel Wasserstein-based PAC-Bayesian learning algorithms and we illustrate their empirical advantage on a variety of experiments.
Jindong Jiang, Fei Deng, Gautam Singh, Sungjin Ahn
tl;dr: We propose the Latent Slot Diffusion which combines an object-centric encoder with diffusion decoders. It achieves unsupervised learning of object segmentation, compositional generation, and image editing, surpassing the state-of-the-art models.
The recent success of transformer-based image generative models in object-centric learning highlights the importance of powerful image generators for handling complex scenes. However, despite the high expressiveness of diffusion models in image generation, their integration into object-centric learning remains largely unexplored in this domain. In this paper, we explore the feasibility and potential of integrating diffusion models into object-centric learning and investigate the pros and cons of this approach. We introduce Latent Slot Diffusion (LSD), a novel model that serves dual purposes: it is the first object-centric learning model to replace conventional slot decoders with a latent diffusion model conditioned on object slots, and it is also the first unsupervised compositional conditional diffusion model that operates without the need for supervised annotations like text. Through experiments on various object-centric tasks, including the first application of the FFHQ dataset in this field, we demonstrate that LSD significantly outperforms state-of-the-art transformer-based decoders, particularly in more complex scenes, and exhibits superior unsupervised compositional generation quality. In addition, we conduct a preliminary investigation into the integration of pre-trained diffusion models in LSD and demonstrate its effectiveness in real-world image segmentation and generation. Project page is available at https://latentslotdiffusion.github.io
Tianqin Li, Ziqi Wen, Yangfan Li, Tai Sing Lee
tl;dr: This study demonstrates that shape bias can emerge through the principle of efficient coding, paving the way for more human-like visual perception in CNNs.
Current deep-learning models for object recognition are known to be heavily biased toward texture. In contrast, human visual systems are known to be biased toward shape and structure. What could be the design principles in human visual systems that led to this difference? How could we introduce more shape bias into the deep learning models? In this paper, we report that sparse coding, a ubiquitous principle in the brain, can in itself introduce shape bias into the network. We found that enforcing the sparse coding constraint using a non-differential Top-K operation can lead to the emergence of structural encoding in neurons in convolutional neural networks, resulting in a smooth decomposition of objects into parts and subparts and endowing the networks with shape bias. We demonstrated this emergence of shape bias and its functional benefits for different network structures with various datasets. For object recognition convolutional neural networks, the shape bias leads to greater robustness against style and pattern change distraction. For the image synthesis generative adversary networks, the emerged shape bias leads to more coherent and decomposable structures in the synthesized images. Ablation studies suggest that sparse codes tend to encode structures, whereas the more distributed codes tend to favor texture. Our code is host at the github repository: \url{https://github.com/Crazy-Jack/nips2023_shape_vs_texture}
Tiep Le, Vasudev Lal, Phillip Howard
Counterfactual examples have proven to be valuable in the field of natural language processing (NLP) for both evaluating and improving the robustness of language models to spurious correlations in datasets. Despite their demonstrated utility for NLP, multimodal counterfactual examples have been relatively unexplored due to the difficulty of creating paired image-text data with minimal counterfactual changes. To address this challenge, we introduce a scalable framework for automatic generation of counterfactual examples using text-to-image diffusion models. We use our framework to create COCO-Counterfactuals, a multimodal counterfactual dataset of paired image and text captions based on the MS-COCO dataset. We validate the quality of COCO-Counterfactuals through human evaluations and show that existing multimodal models are challenged by our counterfactual image-text pairs. Additionally, we demonstrate the usefulness of COCO-Counterfactuals for improving out-of-domain generalization of multimodal vision-language models via training data augmentation. We make our code and the COCO-Counterfactuals dataset publicly available.
Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, Kun Zhang
Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Although current methods achieve target joint distribution identifiability by enforcing minimal changes across domains, they often necessitate stringent conditions, such as an adequate number of domains, monotonic transformation of latent variables, and invariant label distributions. These requirements are challenging to satisfy in real-world applications. To mitigate the need for these strict assumptions, we propose a subspace identification theory that guarantees the disentanglement of domain-invariant and domain-specific variables under less restrictive constraints regarding domain numbers and transformation properties and thereby facilitating domain adaptation by minimizing the impact of domain shifts on invariant variables. Based on this theory, we develop a Subspace Identification Guarantee (SIG) model that leverages variational inference. Furthermore, the SIG model incorporates class-aware conditional alignment to accommodate target shifts where label distributions change with the domain. Experimental results demonstrate that our SIG model outperforms existing MSDA techniques on various benchmark datasets, highlighting its effectiveness in real-world applications.
Sebastian Ament, Sam Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy
tl;dr: We analyze and fix pathologies of Expected Improvement and its variants for single and multiple-objective problems, leading to significant improvements in empirical optimization performance.
Expected Improvement (EI) is arguably the most popular acquisition function in Bayesian optimization and has found countless successful applications, but its performance is often exceeded by that of more recent methods. Notably, EI and its variants, including for the parallel and multi-objective settings, are challenging to optimize because their acquisition values vanish numerically in many regions. This difficulty generally increases as the number of observations, dimensionality of the search space, or the number of constraints grow, resulting in performance that is inconsistent across the literature and most often sub-optimal. Herein, we propose LogEI, a new family of acquisition functions whose members either have identical or approximately equal optima as their canonical counterparts, but are substantially easier to optimize numerically. We demonstrate that numerical pathologies manifest themselves in “classic” analytic EI, Expected Hypervolume Improvement (EHVI), as well as their constrained, noisy, and parallel variants, and propose corresponding reformulations that remedy these pathologies. Our empirical results show that members of the LogEI family of acquisition functions substantially improve on the optimization performance of their canonical counterparts and surprisingly, are on par with or exceed the performance of recent state-of-the-art acquisition functions, highlighting the understated role of numerical optimization in the literature.
Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, Antonio Vergari
tl;dr: We cast existing state-of-the-art knowledge graph embedding models into generative models that enable us to perform exact and efficient marginalisation, sampling and to integrate hard constraints with theoretical guarantees.
Some of the most successful knowledge graph embedding (KGE) models for link prediction – CP, RESCAL, TuckER, ComplEx – can be interpreted as energy-based models. Under this perspective they are not amenable for exact maximum-likelihood estimation (MLE), sampling and struggle to integrate logical constraints. This work re-interprets the score functions of these KGEs as circuits – constrained computational graphs allowing efficient marginalisation. Then, we design two recipes to obtain efficient generative circuit models by either restricting their activations to be non-negative or squaring their outputs. Our interpretation comes with little or no loss of performance for link prediction, while the circuits framework unlocks exact learning by MLE, efficient sampling of new triples, and guarantee that logical constraints are satisfied by design. Furthermore, our models scale more gracefully than the original KGEs on graphs with millions of entities.
Xinyi Chen, Elad Hazan
Choosing the optimal hyperparameters, including learning rate and momentum, for specific optimization instances is a significant yet non-convex challenge. This makes conventional iterative techniques such as hypergradient descent \cite{baydin2017online} insufficient in obtaining global optimality guarantees. We consider the more general task of meta-optimization -- online learning of the best optimization algorithm given problem instances, and introduce a novel approach based on control theory. We show how meta-optimization can be formulated as an optimal control problem, departing from existing literature that use stability-based methods to study optimization. Our approach leverages convex relaxation techniques in the recently-proposed nonstochastic control framework to overcome the challenge of nonconvexity, and obtains regret guarantees vs. the best offline solution. This guarantees that in meta-optimization, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.
Chaoqi Chen, Luyao Tang, Yue Huang, Xiaoguang Han, Yizhou Yu
tl;dr: We propose a principled framework (CODA) for a new and challenging domain generalization setting where both domain shift and open class occur on test data.
The generalization capability of machine learning systems degenerates notably when the test distribution drifts from the training distribution. Recently, Domain Generalization (DG) has been gaining momentum in enabling machine learning models to generalize to unseen domains. However, most DG methods assume that training and test data share an identical label space, ignoring the potential unseen categories in many real-world applications. In this paper, we delve into a more general but difficult problem termed Open Test-Time DG (OTDG), where both domain shift and open class may occur on the unseen test data. We propose Compaction and Disambiguation (CODA), a novel two-stage framework for learning compact representations and adapting to open classes in the wild. To meaningfully regularize the model's decision boundary, CODA introduces virtual unknown classes and optimizes a new training objective to insert unknowns into the latent space by compacting the embedding space of source known classes. To adapt target samples to the source model, we then disambiguate the decision boundaries between known and unknown classes with a test-time training objective, mitigating the adaptivity gap and catastrophic forgetting challenges. Experiments reveal that CODA can significantly outperform the previous best method on standard DG datasets and harmonize the classification accuracy between known and unknown classes.
Evren Gokcen, Anna Ivic Jasper, Alison Xu, Adam Kohn, Christian K. Machens, Byron M. Yu
tl;dr: We developed a dimensionality reduction framework for characterizing the multi-dimensional, concurrent flow of signals across multiple neuronal populations.
Modern recording techniques now allow us to record from distinct neuronal populations in different brain networks. However, especially as we consider multiple (more than two) populations, new conceptual and statistical frameworks are needed to characterize the multi-dimensional, concurrent flow of signals among these populations. Here, we develop a dimensionality reduction framework that determines (1) the subset of populations described by each latent dimension, (2) the direction of signal flow among those populations, and (3) how those signals evolve over time within and across experimental trials. We illustrate these features in simulation, and further validate the method by applying it to previously studied recordings from neuronal populations in macaque visual areas V1 and V2. Then we study interactions across select laminar compartments of areas V1, V2, and V3d, recorded simultaneously with multiple Neuropixels probes. Our approach uncovered signatures of selective communication across these three areas that related to their retinotopic alignment. This work advances the study of concurrent signaling across multiple neuronal populations.
Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, Francesco Locatello
Recovering the latent factors of variation of high dimensional data has so far focused on simple synthetic settings. Mostly building on unsupervised and weakly-supervised objectives, prior work missed out on the positive implications for representation learning on real world data. In this work, we propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation. Assuming each supervised task only depends on an unknown subset of the factors of variation, we disentangle the feature space of a supervised multi-task model, with features activating sparsely across different tasks and information being shared as appropriate. Importantly, we never directly observe the factors of variations but establish that access to multiple tasks is sufficient for identifiability under sufficiency and minimality assumptions. We validate our approach on six real world distribution shift benchmarks, and different data modalities (images, text), demonstrating how disentangled representations can be transferred to real settings.
Chen Xu, Xiuyuan Cheng, Yao Xie
tl;dr: Neural ODE model which learns the deterministic transport equation that solves the Fokker-Planck equation of the diffusion process, allowing block-wise training inspired by the JKO scheme at reduced computation and memory cost.
Normalizing flow is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks. Existing works adopt special network architectures and regularization of flow trajectories. In this paper, we develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto (JKO) scheme, which unfolds the discrete-time dynamic of the Wasserstein gradient flow. The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks, avoiding sampling SDE trajectories and score matching or variational learning, thus reducing the memory load and difficulty in end-to-end training. We also develop adaptive time reparameterization of the flow network with a progressive refinement of the induced trajectory in probability space to improve the model accuracy further. Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance compared with existing flow and diffusion models at a significantly reduced computational and memory cost.
Felix Biggs, Antonin Schrab, Arthur Gretton
tl;dr: Adaptive MMD two-sample tests without data splitting, by fusing kernels.
We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels used in defining it. For finite sets, this reduces to combining (normalised) MMD values under each of these kernels via a weighted soft maximum. Exponential concentration bounds are proved for our proposed statistics under the null and alternative. We further show how these kernels can be chosen in a data-dependent but permutation-independent way, in a well-calibrated test, avoiding data splitting. This technique applies more broadly to general permutation-based MMD testing, and includes the use of deep kernels with features learnt using unsupervised models such as auto-encoders. We highlight the applicability of our MMD-Fuse tests on both synthetic low-dimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.
Khaled Eldowa, Emmanuel Esposito, Tommaso Cesari, Nicolò Cesa-Bianchi
tl;dr: We improve on the upper and lower bounds for the regret of online learning with undirected feedback graphs
In this work, we improve on the upper and lower bounds for the regret of online learning with strongly observable undirected feedback graphs. The best known upper bound for this problem is $\mathcal{O}\bigl(\sqrt{\alpha T\ln K}\bigr)$, where $K$ is the number of actions, $\alpha$ is the independence number of the graph, and $T$ is the time horizon. The $\sqrt{\ln K}$ factor is known to be necessary when $\alpha = 1$ (the experts case). On the other hand, when $\alpha = K$ (the bandits case), the minimax rate is known to be $\Theta\bigl(\sqrt{KT}\bigr)$, and a lower bound $\Omega\bigl(\sqrt{\alpha T}\bigr)$ is known to hold for any $\alpha$. Our improved upper bound $\mathcal{O}\bigl(\sqrt{\alpha T(1+\ln(K/\alpha))}\bigr)$ holds for any $\alpha$ and matches the lower bounds for bandits and experts, while interpolating intermediate cases. To prove this result, we use FTRL with $q$-Tsallis entropy for a carefully chosen value of $q \in [1/2, 1)$ that varies with $\alpha$. The analysis of this algorithm requires a new bound on the variance term in the regret. We also show how to extend our techniques to time-varying graphs, without requiring prior knowledge of their independence numbers. Our upper bound is complemented by an improved $\Omega\bigl(\sqrt{\alpha T(\ln K)/(\ln\alpha)}\bigr)$ lower bound for all $\alpha > 1$, whose analysis relies on a novel reduction to multitask learning. This shows that a logarithmic factor is necessary as soon as $\alpha < K$.
Yefan Zhou, Tianyu Pang, Keqin Liu, charles h martin, Michael W. Mahoney, Yaoqing Yang
Regularization in modern machine learning is crucial, and it can take various forms in algorithmic design: training set, model family, error function, regularization terms, and optimizations. In particular, the learning rate, which can be interpreted as a temperature-like parameter within the statistical mechanics of learning, plays a crucial role in neural network training. Indeed, many widely adopted training strategies basically just define the decay of the learning rate over time. This process can be interpreted as decreasing a temperature, using either a global learning rate (for the entire model) or a learning rate that varies for each parameter. This paper proposes TempBalance, a straightforward yet effective layer-wise learning rate method. TempBalance is based on Heavy-Tailed Self-Regularization (HT-SR) Theory, an approach which characterizes the implicit self-regularization of different layers in trained models. We demonstrate the efficacy of using HT-SR-motivated metrics to guide the scheduling and balancing of temperature across all network layers during model training, resulting in improved performance during testing. We implement TempBalance on CIFAR10, CIFAR100, SVHN, and TinyImageNet datasets using ResNets, VGGs and WideResNets with various depths and widths. Our results show that TempBalance significantly outperforms ordinary SGD and carefully-tuned spectral norm regularization. We also show that TempBalance outperforms a number of state-of-the-art optimizers and learning rate schedulers.
Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, Yu Su
tl;dr: We introduce Mind2Web, the first dataset for developing and evaluating generalist agents for the web that can follow language instructions to complete complex tasks on any website.
We introduce Mind2Web, the first dataset for developing and evaluating generalist agents for the web that can follow language instructions to complete complex tasks on any website. Existing datasets for web agents either use simulated websites or only cover a limited set of websites and tasks, thus not suitable for generalist web agents. With over 2,000 open-ended tasks collected from 137 websites spanning 31 domains and crowdsourced action sequences for the tasks, Mind2Web provides three necessary ingredients for building generalist web agents: 1) diverse domains, websites, and tasks, 2) use of real-world websites instead of simulated and simplified ones, and 3) a broad spectrum of user interaction patterns. Based on Mind2Web, we conduct an initial exploration of using large language models (LLMs) for building generalist web agents. While the raw HTML of real-world websites are often too large to be fed to LLMs, we show that first filtering it with a small LM significantly improves the effectiveness and efficiency of LLMs. Our solution demonstrates a decent level of performance, even on websites or entire domains the model has never seen before, but there is still a substantial room to improve towards truly generalizable agents. We open-source our dataset, model implementation, and trained models (https://osu-nlp-group.github.io/Mind2Web) to facilitate further research on building a generalist agent for the web.
Ben Chugg, Santiago Cortes-Gomez, Bryan Wilder, Aaditya Ramdas
tl;dr: We provide efficient methods to sequentially audit the fairness of models which handle continuous monitoring of data, randomized data collection policies, and distribution shift.
We provide practical, efficient, and nonparametric methods for auditing the fairness of deployed classification and regression models. Whereas previous work relies on a fixed-sample size, our methods are sequential and allow for the continuous monitoring of incoming data, making them highly amenable to tracking the fairness of real-world systems. We also allow the data to be collected by a probabilistic policy as opposed to sampled uniformly from the population. This enables auditing to be conducted on data gathered for another purpose. Moreover, this policy may change over time and different policies may be used on different subpopulations. Finally, our methods can handle distribution shift resulting from either changes to the model or changes in the underlying population. Our approach is based on recent progress in anytime-valid inference and game-theoretic statistics---the ``testing by betting'' framework in particular. These connections ensure that our methods are interpretable, fast, and easy to implement. We demonstrate the efficacy of our approach on three benchmark fairness datasets.
Andrea Schioppa, Katja Filippova, Ivan Titov, Polina Zablotskaia
tl;dr: We identify the problematic assumptions made by Influence Functions methods and clarify what can be expected theoretically from them; based on this we propose to correct mis-predictions by taking a few fine-tuning steps on influential examples.
Influence functions (IF) have been seen as a technique for explaining model predictions through the lens of the training data. Their utility is assumed to be in identifying training examples "responsible" for a prediction so that, for example, correcting a prediction is possible by intervening on those examples (removing or editing them) and retraining the model. However, recent empirical studies have shown that the existing methods of estimating IF predict the leave-one-out-and-retrain effect poorly. In order to understand the mismatch between the theoretical promise and the practical results, we analyse five assumptions made by IF methods which are problematic for modern-scale deep neural networks and which concern convexity, numeric stability, training trajectory and parameter divergence. This allows us to clarify what can be expected theoretically from IF. We show that while most assumptions can be addressed successfully, the parameter divergence poses a clear limitation on the predictive power of IF: influence fades over training time even with deterministic training. We illustrate this theoretical result with BERT and ResNet models. Another conclusion from the theoretical analysis is that IF are still useful for model debugging and correcting even though some of the assumptions made in prior work do not hold: using natural language processing and computer vision tasks, we verify that mis-predictions can be successfully corrected by taking only a few fine-tuning steps on influential examples.
Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, Adrià Garriga-Alonso
tl;dr: We identify the common workflow for mechanistic interpretability work, and automate its “systematic ablations” step with a new algorithm, ACDC.
Through considerable effort and intuition, several recent works have reverse-engineered nontrivial behaviors of transformer models. This paper systematizes the mechanistic interpretability process they followed. First, researchers choose a metric and dataset that elicit the desired model behavior. Then, they apply activation patching to find which abstract neural network units are involved in the behavior. By varying the dataset, metric, and units under investigation, researchers can understand the functionality of each component. We automate one of the process' steps: finding the connections between the abstract neural network units that form a circuit. We propose several algorithms and reproduce previous interpretability results to validate them. For example, the ACDC algorithm rediscovered 5/5 of the component types in a circuit in GPT-2 Small that computes the Greater-Than operation. ACDC selected 68 of the 32,000 edges in GPT-2 Small, all of which were manually found by previous work. Our code is available at https://github.com/ArthurConmy/Automatic-Circuit-Discovery
Carol Xuan Long, Hsiang Hsu, Wael Alghamdi, Flavio Calmon
tl;dr: We demonstrate that fairness interventions in machine learning optimized solely for group fairness and accuracy can exacerbate predictive multiplicity.
Machine learning tasks may admit multiple competing models that achieve similar performance yet produce conflicting outputs for individual samples---a phenomenon known as predictive multiplicity. We demonstrate that fairness interventions in machine learning optimized solely for group fairness and accuracy can exacerbate predictive multiplicity. Consequently, state-of-the-art fairness interventions can mask high predictive multiplicity behind favorable group fairness and accuracy metrics. We argue that a third axis of ``arbitrariness'' should be considered when deploying models to aid decision-making in applications of individual-level impact. To address this challenge, we propose an ensemble algorithm applicable to any fairness intervention that provably ensures more consistent predictions.
Pengze Zhang, Hubery Yin, Chen Li, Xiaohua Xie
Continuous diffusion models are commonly acknowledged to display a deterministic probability flow, whereas discrete diffusion models do not. In this paper, we aim to establish the fundamental theory for the probability flow of discrete diffusion models. Specifically, we first prove that the continuous probability flow is the Monge optimal transport map under certain conditions, and also present an equivalent evidence for discrete cases. In view of these findings, we are then able to define the discrete probability flow in line with the principles of optimal transport. Finally, drawing upon our newly established definitions, we propose a novel sampling method that surpasses previous discrete diffusion models in its ability to generate more certain outcomes. Extensive experiments on the synthetic toy dataset and the CIFAR-10 dataset have validated the effectiveness of our proposed discrete probability flow. Code is released at: https://github.com/PangzeCheung/Discrete-Probability-Flow.
Andrew Campbell, William Harvey, Christian Dietrich Weilbach, Valentin De Bortoli, Tom Rainforth, Arnaud Doucet
tl;dr: We propose a new model class for generating varying dimensional data using jump diffusions.
We propose a new class of generative model that naturally handles data of varying dimensionality by jointly modeling the state and dimension of each datapoint. The generative process is formulated as a jump diffusion process that makes jumps between different dimensional spaces. We first define a dimension destroying forward noising process, before deriving the dimension creating time-reversed generative process along with a novel evidence lower bound training objective for learning to approximate it. Simulating our learned approximation to the time-reversed generative process then provides an effective way of sampling data of varying dimensionality by jointly generating state values and dimensions. We demonstrate our approach on molecular and video datasets of varying dimensionality, reporting better compatibility with test-time diffusion guidance imputation tasks and improved interpolation capabilities versus fixed dimensional models that generate state values and dimensions separately.
Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Alan Fries, Nigam Shah
tl;dr: We release a dataset of the full coded EHR data of ~7000 patients, in addition to the weights and code of a foundation model pretrained on over 2.5 million patient records
While the general machine learning (ML) community has benefited from public datasets, tasks, and models, the progress of ML in healthcare has been hampered by a lack of such shared assets. The success of foundation models creates new challenges for healthcare ML by requiring access to shared pretrained models to validate performance benefits. We help address these challenges through three contributions. First, we publish a new dataset, EHRSHOT, which contains de-identified structured data from the electronic health records (EHRs) of 6,739 patients from Stanford Medicine. Unlike MIMIC-III/IV and other popular EHR datasets, EHRSHOT is longitudinal and not restricted to ICU/ED patients. Second, we publish the weights of CLMBR-T-base, a 141M parameter clinical foundation model pretrained on the structured EHR data of 2.57M patients. We are one of the first to fully release such a model for coded EHR data; in contrast, most prior models released for clinical data (e.g. GatorTron, ClinicalBERT) only work with unstructured text and cannot process the rich, structured data within an EHR. We provide an end-to-end pipeline for the community to validate and build upon its performance. Third, we define 15 few-shot clinical prediction tasks, enabling evaluation of foundation models on benefits such as sample efficiency and task adaptation. Our model and dataset are available via a research data use agreement from here: https://stanfordaimi.azurewebsites.net/. Code to reproduce our results is available here: https://github.com/som-shahlab/ehrshot-benchmark.
Anand Paresh Brahmbhatt, Rishi Saket, Aravindan Raghuveer
tl;dr: Algorithms for PAC learning linear threshold functions from label proportions of random bags of Gaussian feature-vectors
Learning from label proportions (LLP) is a generalization of supervised learning in which the training data is available as sets or bags of feature-vectors (instances) along with the average instance-label of each bag. The goal is to train a good instance classifier. While most previous works on LLP have focused on training models on such training data, computational learnability of LLP was only recently explored by Saket (2021, 2022) who showed worst case intractability of properly learning linear threshold functions (LTFs) from label proportions. However, their work did not rule out efficient algorithms for this problem for natural distributions. In this work we show that it is indeed possible to efficiently learn LTFs using LTFs when given access to random bags of some label proportion in which feature-vectors are, conditioned on their labels, independently sampled from a Gaussian distribution $N(µ, Σ)$. Our work shows that a certain matrix – formed using covariances of the differences of feature-vectors sampled from the bags with and without replacement – necessarily has its principal component, after a transformation, in the direction of the normal vector of the LTF. Our algorithm estimates the means and covariance matrices using subgaussian concentration bounds which we show can be applied to efficiently sample bags for approximating the normal direction. Using this in conjunction with novel generalization error bounds in the bag setting, we show that a low error hypothesis LTF can be identified. For some special cases of the $N(0, I)$ distribution we provide a simpler mean estimation based algorithm. We include an experimental evaluation of our learning algorithms along with a comparison with those of Saket (2021, 2022) and random LTFs, demonstrating the effectiveness of our techniques.
Hamish Flynn, David Reeb, Melih Kandemir, Jan Peters
tl;dr: Based on novel mixture martingales, we obtain tighter confidence bounds for linear bandits resulting in better algorithms with performance guarantees.
We present improved algorithms with worst-case regret guarantees for the stochastic linear bandit problem. The widely used "optimism in the face of uncertainty" principle reduces a stochastic bandit problem to the construction of a confidence sequence for the unknown reward function. The performance of the resulting bandit algorithm depends on the size of the confidence sequence, with smaller confidence sets yielding better empirical performance and stronger regret guarantees. In this work, we use a novel tail bound for adaptive martingale mixtures to construct confidence sequences which are suitable for stochastic bandits. These confidence sequences allow for efficient action selection via convex programming. We prove that a linear bandit algorithm based on our confidence sequences is guaranteed to achieve competitive worst-case regret. We show that our confidence sequences are tighter than competitors, both empirically and theoretically. Finally, we demonstrate that our tighter confidence sequences give improved performance in several hyperparameter tuning tasks.
Rui M. Castro, Fredrik Hellström, Tim van Erven
tl;dr: Always guarantees the minimax regret, but adaptively queries (much) fewer labels when possible.
We consider online prediction of a binary sequence with expert advice. For this setting, we devise label-efficient forecasting algorithms, which use a selective sampling scheme that enables collecting much fewer labels than standard procedures. For the general case without a perfect expert, we prove best-of-both-worlds guarantees, demonstrating that the proposed forecasting algorithm always queries sufficiently many labels in the worst case to obtain optimal regret guarantees, while simultaneously querying much fewer labels in more benign settings. Specifically, for a scenario where one expert is strictly better than the others in expectation, we show that the label complexity of the label-efficient forecaster is roughly upper-bounded by the square root of the number of rounds. Finally, we present numerical experiments empirically showing that the normalized regret of the label-efficient forecaster can asymptotically match known minimax rates for pool-based active learning, suggesting it can optimally adapt to benign settings.
Sindy Löwe, Phillip Lippe, Francesco Locatello, Max Welling
tl;dr: This paper introduces several advancements for continuous and distributed object-centric representations, scaling them from simple toy to real-world data, and thereby paving the way for a new paradigm in objects discovery.
The binding problem in human cognition, concerning how the brain represents and connects objects within a fixed network of neural connections, remains a subject of intense debate. Most machine learning efforts addressing this issue in an unsupervised setting have focused on slot-based methods, which may be limiting due to their discrete nature and difficulty to express uncertainty. Recently, the Complex AutoEncoder was proposed as an alternative that learns continuous and distributed object-centric representations. However, it is only applicable to simple toy data. In this paper, we present Rotating Features, a generalization of complex-valued features to higher dimensions, and a new evaluation procedure for extracting objects from distributed representations. Additionally, we show the applicability of our approach to pre-trained features. Together, these advancements enable us to scale distributed object-centric representations from simple toy to real-world data. We believe this work advances a new paradigm for addressing the binding problem in machine learning and has the potential to inspire further innovation in the field.
Aashaka Desai, Lauren Berger, Fyodor O Minakov, Vanessa Milan, Chinmay Singh, Kriston L Pumphrey, Richard Ladner, Hal Daumé III, Alex Xijie Lu, Naomi Caselli, Danielle Bragg
Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. We show that training supervised machine learning classifiers with our dataset advances the state-of-the-art on metrics relevant for dictionary retrieval, achieving 63\% accuracy and a recall-at-10 of 91\%, evaluated entirely on videos of users who are not present in the training or validation sets.
Yue Yu, Xiao Wang, Mengmei Zhang, Nian Liu, Chuan Shi
tl;dr: We investigate the intrinsic property of nodes in GCL and improve the training of GCL provably upon that property.
Graph Contrastive Learning (GCL) has emerged as a popular training approach for learning node embeddings from augmented graphs without labels. Despite the key principle that maximizing the similarity between positive node pairs while minimizing it between negative node pairs is well established, some fundamental problems are still unclear. Considering the complex graph structure, are some nodes consistently well-trained and following this principle even with different graph augmentations? Or are there some nodes more likely to be untrained across graph augmentations and violate the principle? How to distinguish these nodes and further guide the training of GCL? To answer these questions, we first present experimental evidence showing that the training of GCL is indeed imbalanced across all nodes. To address this problem, we propose the metric "node compactness", which is the lower bound of how a node follows the GCL principle related to the range of augmentations. We further derive the form of node compactness theoretically through bound propagation, which can be integrated into binary cross-entropy as a regularization. To this end, we propose the PrOvable Training (POT) for GCL, which regularizes the training of GCL to encode node embeddings that follows the GCL principle better. Through extensive experiments on various benchmarks, POT consistently improves the existing GCL approaches, serving as a friendly plugin.
Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, Beidi Chen
Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the $\mathsf{KV}$ $\mathsf{cache}$, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the $\mathsf{KV}$ $\mathsf{cache}$ which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters ($\mathsf{H_2}$). Through a comprehensive investigation, we find that ($i$) the emergence of $\mathsf{H_2}$ is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and ($ii$) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle ($\mathsf{H_2O}$), a $\mathsf{KV}$ $\mathsf{cache}$ eviction policy that dynamically retains a balance of recent and $\mathsf{H_2}$ tokens. We formulate the $\mathsf{KV}$ $\mathsf{cache}$ eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of $\mathsf{H_2O}$ with 20\% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to $29\times$, $29\times$, and $3\times$ on OPT-6.7B and OPT-30B. With the same batch size, $\mathsf{H_2O}$ can reduce the latency by up to $1.9\times$.
Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Henry Mguni, Yali Du, Jun Wang
When solving decision-making tasks, humans typically depend on information from two key sources: (1) Historical policy data, which provides interaction replay from the environment, and (2) Analytical insights in natural language form, exposing the invaluable thought process or strategic considerations. Despite this, the majority of preceding research focuses on only one source: they either use historical replay exclusively to directly learn policy or value functions, or engaged in language model training utilizing mere language corpus. In this paper, we argue that a powerful autonomous agent should cover both sources. Thus, we propose ChessGPT, a GPT model bridging policy learning and language modeling by integrating data from these two sources in Chess games. Specifically, we build a large-scale game and language dataset related to chess. Leveraging the dataset, we showcase two model examples ChessCLIP and ChessGPT, integrating policy learning and language modeling. Finally, we propose a full evaluation framework for evaluating language model's chess ability. Experimental results validate our model and dataset's effectiveness. We open source our code, model, and dataset at https://github.com/waterhorse1/ChessGPT.
Cassidy Laidlaw, Stuart Russell, Anca Dragan
tl;dr: We prove new sample complexity bounds for reinforcement learning (RL) and demonstrate they closely reflect the performance of deep RL algorithms.
Deep reinforcement learning (RL) works impressively in some environments and fails catastrophically in others. Ideally, RL theory should be able to provide an understanding of why this is, i.e. bounds predictive of practical performance. Unfortunately, current theory does not quite have this ability. We compare standard deep RL algorithms to prior sample complexity bounds by introducing a new dataset, BRIDGE. It consists of 155 MDPs from common deep RL benchmarks, along with their corresponding tabular representations, which enables us to exactly compute instance-dependent bounds. We find that prior bounds do not correlate well with when deep RL succeeds vs. fails, but discover a surprising property that does. When actions with the highest Q-values under the *random* policy also have the highest Q-values under the *optimal* policy—i.e., when it is optimal to act greedily with respect to the random's policy Q function—deep RL tends to succeed; when they don't, deep RL tends to fail. We generalize this property into a new complexity measure of an MDP that we call the *effective horizon*, which roughly corresponds to how many steps of lookahead search would be needed in that MDP in order to identify the next optimal action, when leaf nodes are evaluated with random rollouts. Using BRIDGE, we show that the effective horizon-based bounds are more closely reflective of the empirical performance of PPO and DQN than prior sample complexity bounds across four metrics. We also show that, unlike existing bounds, the effective horizon can predict the effects of using reward shaping or a pre-trained exploration policy. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon.
Pascal Leroy, Pablo G. Morato, Jonathan Pisane, Athanasios Kolios, Damien Ernst
We introduce IMP-MARL, an open-source suite of multi-agent reinforcement learning (MARL) environments for large-scale Infrastructure Management Planning (IMP), offering a platform for benchmarking the scalability of cooperative MARL methods in real-world engineering applications. In IMP, a multi-component engineering system is subject to a risk of failure due to its components' damage condition. Specifically, each agent plans inspections and repairs for a specific system component, aiming to minimise maintenance costs while cooperating to minimise system failure risk. With IMP-MARL, we release several environments including one related to offshore wind structural systems, in an effort to meet today's needs to improve management strategies to support sustainable and reliable energy systems. Supported by IMP practical engineering environments featuring up to 100 agents, we conduct a benchmark campaign, where the scalability and performance of state-of-the-art cooperative MARL methods are compared against expert-based heuristic policies. The results reveal that centralised training with decentralised execution methods scale better with the number of agents than fully centralised or decentralised RL approaches, while also outperforming expert-based heuristic policies in most IMP environments. Based on our findings, we additionally outline remaining cooperation and scalability challenges that future MARL methods should still address. Through IMP-MARL, we encourage the implementation of new environments and the further development of MARL methods.
Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V Le, Tengyu Ma, Adams Wei Yu
tl;dr: We present an algorithm that reweights how much of each domain/data source is in a language modeling dataset (e.g. The Pile), resulting in faster LM training and improvements in perplexity and downstream accuracy.
The mixture proportions of pretraining data domains (e.g., Wikipedia, books, web text) greatly affect language model (LM) performance. In this paper, we propose Domain Reweighting with Minimax Optimization (DoReMi), which first trains a small proxy model using group distributionally robust optimization (Group DRO) over domains to produce domain weights (mixture proportions) without knowledge of downstream tasks. We then resample a dataset with these domain weights and train a larger, full-sized model. In our experiments, we use DoReMi on a 280M-parameter proxy model to find domain weights for training an 8B-parameter model (30x larger) more efficiently. On The Pile, DoReMi improves perplexity across all domains, even when it downweights a domain. DoReMi improves average few-shot downstream accuracy by 6.5% points over a baseline model trained using The Pile's default domain weights and reaches the baseline accuracy with 2.6x fewer training steps. On the GLaM dataset, DoReMi, which has no knowledge of downstream tasks, even matches the performance of using domain weights tuned on downstream tasks.
Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li, Yu Liu
tl;dr: A unified benchmark for deploying MCTS/MuZero reinforcement learning methods in general sequential decision scenarios
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
Adrián Javaloy, Pablo Sanchez Martin, Isabel Valera
tl;dr: Armed with identifiability results, we demonstraste how to use normalizing flows to capture a causal model and perform causal inference with it.
In this work, we deepen on the use of normalizing flows for causal reasoning. Specifically, we first leverage recent results on non-linear ICA to show that causal models are identifiable from observational data given a causal ordering, and thus can be recovered using autoregressive normalizing flows (NFs). Second, we analyze different design and learning choices for *causal normalizing flows* to capture the underlying causal data-generating process. Third, we describe how to implement the *do-operator* in causal NFs, and thus, how to answer interventional and counterfactual questions. Finally, in our experiments, we validate our design and training choices through a comprehensive ablation study; compare causal NFs to other approaches for approximating causal models; and empirically demonstrate that causal NFs can be used to address real-world problems—where the presence of mixed discrete-continuous data and partial knowledge on the causal graph is the norm. The code for this work can be found at https://github.com/psanch21/causal-flows.
Sasha Luccioni, Christopher Akiki, Margaret Mitchell, Yacine Jernite
tl;dr: It's hard to evaluate and explore the social biases in outputs of text-to-image models; we propose a new non-parametric method for exploring these biases, accompanied by user-friendly tools to empower users to do their own explorations.
As machine learning-enabled Text-to-Image (TTI) systems are becoming increasingly prevalent and seeing growing adoption as commercial services, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. This evaluation, however, is made more difficult by the synthetic nature of these systems’ outputs: common definitions of diversity are grounded in social categories of people living in the world, whereas the artificial depictions of fictive humans created by these systems have no inherent gender or ethnicity. To address this need, we propose a new method for exploring the social biases in TTI systems. Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts, and comparing it to the variation engendered by spanning different professions. This allows us to (1) identify specific bias trends, (2) provide targeted scores to directly compare models in terms of diversity and representation, and (3) jointly model interdependent social variables to support a multidimensional analysis. We leverage this method to analyze images generated by 3 popular TTI systems (Dall·E 2 , Stable Diffusion v 1.4 and 2) and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents. We also release the datasets and low-code interactive bias exploration platforms developed for this work, as well as the necessary tools to similarly evaluate additional TTI systems.
Adam J Stewart, Nils Lehmann, Isaac Corley, Yi Wang, Yi-Chia Chang, Nassim Ait Ait Ali Braham, Shradha Sehgal, Caleb Robinson, Arindam Banerjee
tl;dr: We introduce SSL4EO-L, the first SSL dataset for Landsat imagery and the largest Landsat dataset in history, in addition to the first foundation models for Landsat pre-trained on SSL4EO-L and evaluated on several new semantic segmentation datasets.
The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites. The multispectral imagery captured by sensors onboard these satellites is critical for a wide range of scientific fields. Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis due to the prevalence of small labeled datasets and lack of foundation models. In this paper, we introduce SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites (including 3 sensors and 2 product levels) and the largest Landsat dataset in history (5M image patches). Additionally, we modernize and re-release the L7 Irish and L8 Biome cloud detection datasets, and introduce the first ML benchmark datasets for Landsats 4–5 TM and Landsat 7 ETM+ SR. Finally, we pre-train the first foundation models for Landsat imagery using SSL4EO-L and evaluate their performance on multiple semantic segmentation tasks. All datasets and model weights are available via the TorchGeo library, making reproducibility and experimentation easy, and enabling scientific advancements in the burgeoning field of remote sensing for a multitude of downstream applications.
Vladimir R Kostic, Karim Lounici, Pietro Novelli, massimiliano pontil
tl;dr: We derive minimax optimal statistical rates for learning Koopman operator and combine them with spectral perturbation theory to provide strong guarantees for learning Koopman eigenvalues and eigenfunctions.
Non-linear dynamical systems can be handily described by the associated Koopman operator, whose action evolves every observable of the system forward in time. Learning the Koopman operator and its spectral decomposition from data is enabled by a number of algorithms. In this work we present for the first time non-asymptotic learning bounds for the Koopman eigenvalues and eigenfunctions. We focus on time-reversal-invariant stochastic dynamical systems, including the important example of Langevin dynamics. We analyze two popular estimators: Extended Dynamic Mode Decomposition (EDMD) and Reduced Rank Regression (RRR). Our results critically hinge on novel {minimax} estimation bounds for the operator norm error, that may be of independent interest. Our spectral learning bounds are driven by the simultaneous control of the operator norm error and a novel metric distortion functional of the estimated eigenfunctions. The bounds indicates that both EDMD and RRR have similar variance, but EDMD suffers from a larger bias which might be detrimental to its learning rate. Our results shed new light on the emergence of spurious eigenvalues, an issue which is well known empirically. Numerical experiments illustrate the implications of the bounds in practice.
Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, Shin Ishii
tl;dr: Fast vectorized RL environments written in JAX, including backgammon, chess, shogi, and Go.
We propose Pgx, a suite of board game reinforcement learning (RL) environments written in JAX and optimized for GPU/TPU accelerators. By leveraging JAX's auto-vectorization and parallelization over accelerators, Pgx can efficiently scale to thousands of simultaneous simulations over accelerators. In our experiments on a DGX-A100 workstation, we discovered that Pgx can simulate RL environments 10-100x faster than existing implementations available in Python. Pgx includes RL environments commonly used as benchmarks in RL research, such as backgammon, chess, shogi, and Go. Additionally, Pgx offers miniature game sets and baseline models to facilitate rapid research cycles. We demonstrate the efficient training of the Gumbel AlphaZero algorithm with Pgx environments. Overall, Pgx provides high-performance environment simulators for researchers to accelerate their RL experiments. Pgx is available at https://github.com/sotetsuk/pgx.
Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin David Haeffele, Yi Ma
tl;dr: We develop white-box transformer-like deep network architectures which are mathematically interpretable and achieve performance very close to ViTs.
In this paper, we contend that the objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a mixture of low-dimensional Gaussian distributions supported on incoherent subspaces. The quality of the final representation can be measured by a unified objective function called sparse rate reduction. From this perspective, popular deep networks such as transformers can be naturally viewed as realizing iterative schemes to optimize this objective incrementally. Particularly, we show that the standard transformer block can be derived from alternating optimization on complementary parts of this objective: the multi-head self-attention operator can be viewed as a gradient descent step to compress the token sets by minimizing their lossy coding rate, and the subsequent multi-layer perceptron can be viewed as attempting to sparsify the representation of the tokens. This leads to a family of white-box transformer-like deep network architectures which are mathematically fully interpretable. Despite their simplicity, experiments show that these networks indeed learn to optimize the designed objective: they compress and sparsify representations of large-scale real-world vision datasets such as ImageNet, and achieve performance very close to thoroughly engineered transformers such as ViT. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
Pratik Patil, Jin-Hong Du
tl;dr: We establish an array of precise equivalences between the implicit regularization due to subsampling and explicit ridge regularization with mild data assumptions.
We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimators, when fitted with different ridge regularization levels $\lambda$ and subsample aspect ratios $\psi$, are asymptotically equivalent along specific paths in the $(\lambda,\psi)$-plane (where $\psi$ is the ratio of the feature dimension to the subsample size). Our results only require bounded moment assumptions on feature and response distributions and allow for arbitrary joint distributions. Furthermore, we provide a data-dependent method to determine the equivalent paths of $(\lambda,\psi)$. An indirect implication of our equivalences is that optimally tuned ridge regression exhibits a monotonic prediction risk in the data aspect ratio. This resolves a recent open problem raised by Nakkiran et al. for general data distributions under proportional asymptotics, assuming a mild regularity condition that maintains regression hardness through linearized signal-to-noise ratios.
Jie Huang, Man Zhou, JingHao Zhang, Gang Yang, Mingde Yao, Chongyi Li, Zhiwei Xiong, Feng Zhao
Normalization techniques that capture image style by statistical representation have become a popular component in deep neural networks. Although image enhancement can be considered as a form of style transformation, there has been little exploration of how normalization affect the enhancement performance. To fully leverage the potential of normalization, we present a novel Transition-Constant Normalization (TCN) for various image enhancement tasks. Specifically, it consists of two streams of normalization operations arranged under an invertible constraint, along with a feature sub-sampling operation that satisfies the normalization constraint. TCN enjoys several merits, including being parameter-free, plug-and-play, and incurring no additional computational costs. We provide various formats to utilize TCN for image enhancement, including seamless integration with enhancement networks, incorporation into encoder-decoder architectures for downsampling, and implementation of efficient architectures. Through extensive experiments on multiple image enhancement tasks, like low-light enhancement, exposure correction, SDR2HDR translation, and image dehazing, our TCN consistently demonstrates performance improvements. Besides, it showcases extensive ability in other tasks including pan-sharpening and medical segmentation. The code is available at \textit{\textcolor{blue}{https://github.com/huangkevinj/TCNorm}}.
Kaiwen Zha, Peng Cao, Jeany Son, Yuzhe Yang, Dina Katabi
tl;dr: We propose a generic framework that learns continuous representations for regression, which not only boosts performance but also improves robustness, data efficiency, and generalization.
Deep regression models typically learn in an end-to-end fashion without explicitly emphasizing a regression-aware representation. Consequently, the learned representations exhibit fragmentation and fail to capture the continuous nature of sample orders, inducing suboptimal results across a wide range of regression tasks. To fill the gap, we propose Rank-N-Contrast (RNC), a framework that learns continuous representations for regression by contrasting samples against each other based on their rankings in the target space. We demonstrate, theoretically and empirically, that RNC guarantees the desired order of learned representations in accordance with the target orders, enjoying not only better performance but also significantly improved robustness, efficiency, and generalization. Extensive experiments using five real-world regression datasets that span computer vision, human-computer interaction, and healthcare verify that RNC achieves state-of-the-art performance, highlighting its intriguing properties including better data efficiency, robustness to spurious targets and data corruptions, and generalization to distribution shifts.
Hu Yu, Jie Huang, Lingzhi Li, Man Zhou, Feng Zhao
Existing deep learning-based computer vision methods usually operate in the spatial and frequency domains, which are two orthogonal \textbf{individual} perspectives for image processing. In this paper, we introduce a new spatial-frequency analysis tool, Fractional Fourier Transform (FRFT), to provide comprehensive \textbf{unified} spatial-frequency perspectives. The FRFT is a unified continuous spatial-frequency transform that simultaneously reflects an image's spatial and frequency representations, making it optimal for processing non-stationary image signals. We explore the properties of the FRFT for image processing and present a fast implementation of the 2D FRFT, which facilitates its widespread use. Based on these explorations, we introduce a simple yet effective operator, Multi-order FRactional Fourier Convolution (MFRFC), which exhibits the remarkable merits of processing images from more perspectives in the spatial-frequency plane. Our proposed MFRFC is a general and basic operator that can be easily integrated into various tasks for performance improvement. We experimentally evaluate the MFRFC on various computer vision tasks, including object detection, image classification, guided super-resolution, denoising, dehazing, deraining, and low-light enhancement. Our proposed MFRFC consistently outperforms baseline methods by significant margins across all tasks.
Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K Sarkar, Scott Kominers, Stuart Shieber
Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult to measure through traditional means, machine learning offers a promising set of techniques for evaluating novelty, summarizing contributions, and embedding semantics. In this paper, we introduce the Harvard USPTO Patent Dataset (HUPD), a large-scale, well-structured, and multi-purpose corpus of English-language patent applications filed to the United States Patent and Trademark Office (USPTO) between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions of patent applications, not the final versions of granted patents, allowing us to study patentability at the time of filing using NLP methods for the first time. It is also novel in its inclusion of rich structured data alongside the text of patent filings: By providing each application’s metadata along with all of its text fields, HUPD enables researchers to perform new sets of NLP tasks that leverage variation in structured covariates. As a case study on the types of research HUPD makes possible, we introduce a new task to the NLP community -- patent acceptance prediction. We additionally show the structured metadata provided in HUPD allows us to conduct explicit studies of concept shifts for this task. We find that performance on patent acceptance prediction decays when models trained in one context are evaluated on different innovation categories and over time. Finally, we demonstrate how HUPD can be used for three additional tasks: Multi-class classification of patent subject areas, language modeling, and abstractive summarization. Put together, our publicly-available dataset aims to advance research extending language and classification models to diverse and dynamic real-world data distributions.
Sibylle Marcotte, Rémi Gribonval, Gabriel Peyré
Understanding the geometric properties of gradient descent dynamics is a key ingredient in deciphering the recent success of very large machine learning models. A striking observation is that trained over-parameterized models retain some properties of the optimization initialization. This "implicit bias" is believed to be responsible for some favorable properties of the trained models and could explain their good generalization properties. The purpose of this article is threefold. First, we rigorously expose the definition and basic properties of "conservation laws", that define quantities conserved during gradient flows of a given model (e.g. of a ReLU network with a given architecture) with any training data and any loss. Then we explain how to find the maximal number of independent conservation laws by performing finite-dimensional algebraic manipulations on the Lie algebra generated by the Jacobian of the model. Finally, we provide algorithms to: a) compute a family of polynomial laws; b) compute the maximal number of (not necessarily polynomial) independent conservation laws. We provide showcase examples that we fully work out theoretically. Besides, applying the two algorithms confirms for a number of ReLU network architectures that all known laws are recovered by the algorithm, and that there are no other independent laws. Such computational tools pave the way to understanding desirable properties of optimization initialization in large machine learning models.
Qinghua Liu, Gellért Weisz, András György, Chi Jin, Csaba Szepesvari
While policy optimization algorithms have played an important role in recent empirical success of Reinforcement Learning (RL), the existing theoretical understanding of policy optimization remains rather limited---they are either restricted to tabular MDPs or suffer from highly suboptimal sample complexity, especial in online RL where exploration is necessary. This paper proposes a simple efficient policy optimization framework---Optimistic NPG for online RL. Optimistic NPG can be viewed as simply combining of the classic natural policy gradient (NPG) algorithm [Kakade, 2001] with optimistic policy evaluation subroutines to encourage exploration. For $d$-dimensional linear MDPs, Optimistic NPG is computationally efficient, and learns an $\epsilon$-optimal policy within $\tilde{\mathcal{O}}(d^2/\epsilon^3)$ samples, which is the first computationally efficient algorithm whose sample complexity has the optimal dimension dependence $\tilde{\Theta}(d^2)$. It also improves over state-of-the-art results of policy optimization algorithms [Zanette et al., 2021] by a factor of $d$. For general function approximation that subsumes linear MDPs, Optimistic NPG, to our best knowledge, is also the first policy optimization algorithm that achieves the polynomial sample complexity for learning near-optimal policies.
Wei Zheng, James Cheng Peng, Zeyuan Hou, Boyu Lyu, Mengfan Wang, Xuelong Mi, Shuoxuan Qiao, Yinan Wan, Guoqiang Yu
tl;dr: NIS3D: A Completely Annotated Benchmark for Dense 3D Nuclei Image Segmentation
3D segmentation of nuclei images is a fundamental task for many biological studies. Despite the rapid advances of large-volume 3D imaging acquisition methods and the emergence of sophisticated algorithms to segment the nuclei in recent years, a benchmark with all cells completely annotated is still missing, making it hard to accurately assess and further improve the performance of the algorithms. The existing nuclei segmentation benchmarks either worked on 2D only or annotated a small number of 3D cells, perhaps due to the high cost of 3D annotation for large-scale data. To fulfill the critical need, we constructed NIS3D, a 3D, high cell density, large-volume, and completely annotated Nuclei Image Segmentation benchmark, assisted by our newly designed semi-automatic annotation software. NIS3D provides more than 22,000 cells across multiple most-used species in this area. Each cell is labeled by three independent annotators, so we can measure the variability of each annotation. A confidence score is computed for each cell, allowing more nuanced testing and performance comparison. A comprehensive review on the methods of segmenting 3D dense nuclei was conducted. The benchmark was used to evaluate the performance of several selected state-of-the-art segmentation algorithms. The best of current methods is still far away from human-level accuracy, corroborating the necessity of generating such a benchmark. The testing results also demonstrated the strength and weakness of each method and pointed out the directions of further methodological development. The dataset can be downloaded here: https://github.com/yu-lab-vt/NIS3D.
Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z. Li
Protein inverse folding has attracted increasing attention in recent years. However, we observe that current methods are usually limited to the CATH dataset and the recovery metric. The lack of a unified framework for ensembling and comparing different methods hinders the comprehensive investigation. In this paper, we propose ProteinBench, a new benchmark for protein design, which comprises extended protein design tasks, integrated models, and diverse evaluation metrics. We broaden the application of methods originally designed for single-chain protein design to new scenarios of multi-chain and \textit{de novo} protein design. Recent impressive methods, including GraphTrans, StructGNN, GVP, GCA, AlphaDesign, ProteinMPNN, PiFold and KWDesign are integrated into our framework. In addition to the recovery, we also evaluate the confidence, diversity, sc-TM, efficiency, and robustness to thoroughly revisit current protein design approaches and inspire future work. As a result, we establish the first comprehensive benchmark for protein design, which is publicly available at \url{https://github.com/A4Bio/OpenCPD}.
Jianyou Wang, Kaicheng Wang, Xiaoyue Wang, Prudhviraj Naidu, Leon Bergen, Ramamohan Paturi
tl;dr: A new and challenging complex query-based Information Retrieval Task Benchmark created with the help of LLM.
In scientific research, the ability to effectively retrieve relevant documents based on complex, multifaceted queries is critical. Existing evaluation datasets for this task are limited, primarily due to the high costs and effort required to annotate resources that effectively represent complex queries. To address this, we propose a novel task, $\textbf{S}$cientific $\textbf{Do}$cument $\textbf{R}$etrieval using $\textbf{M}$ulti-level $\textbf{A}$spect-based qu$\textbf{E}$ries (DORIS-MAE), which is designed to handle the complex nature of user queries in scientific research. We developed a benchmark dataset within the field of computer science, consisting of 100 human-authored complex query cases. For each complex query, we assembled a collection of 100 relevant documents and produced annotated relevance scores for ranking them. Recognizing the significant labor of expert annotation, we also introduce Anno-GPT, a scalable framework for evaluating the viability of Large Language Models (LLMs) such as ChatGPT-3.5 for expert-level dataset annotation tasks. The application of Anno-GPT to annotate the DORIS-MAE dataset resulted in a 500x reduction in cost, without compromising quality. Furthermore, due to the multi-tiered structure of these complex queries, our DORIS-MAE dataset can be extended to over 4,000 sub-query test cases without requiring additional annotation. We evaluated 17 recent retrieval methods on DORIS-MAE, observing notable performance drops compared to traditional datasets. This highlights DORIS-MAE's challenges and the need for better approaches to handle complex, multifaceted queries in scientific research. Our dataset and codebase are available at https://github.com/Real-Doris-Mae/Doris-Mae-Dataset .
Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, Jianfeng Gao
tl;dr: We leverage biomedical figure-caption dataset from PubMed Central, use GPT-4 to self-instruct open-ended instruction-following data, and then train a large vision-language model using a novel curriculum learning method
Conversational generative AI has demonstrated remarkable promise for empowering biomedical practitioners, but current investigations focus on unimodal text. Multimodal conversational AI has seen rapid progress by leveraging billions of image-text pairs from the public web, but such general-domain vision-language models still lack sophistication in understanding and conversing about biomedical images. In this paper, we propose a cost-efficient approach for training a vision-language conversational assistant that can answer open-ended research questions of biomedical images. The key idea is to leverage a large-scale, broad-coverage biomedical figure-caption dataset extracted from PubMed Central, use GPT-4 to self-instruct open-ended instruction-following data from the captions, and then fine-tune a large general-domain vision-language model using a novel curriculum learning method. Specifically, the model first learns to align biomedical vocabulary using the figure-caption pairs as is, then learns to master open-ended conversational semantics using GPT-4 generated instruction-following data, broadly mimicking how a layperson gradually acquires biomedical knowledge. This enables us to train a Large Language and Vision Assistant for BioMedicine (LLaVA-Med) in less than 15 hours (with eight A100s). LLaVA-Med exhibits excellent multimodal conversational capability and can follow open-ended instruction to assist with inquiries about a biomedical image. On three standard biomedical visual question answering datasets, LLaVA-Med outperforms previous supervised state-of-the-art on certain metrics. To facilitate biomedical multimodal research, we will release our instruction-following data and the LLaVA-Med model.
Ziqian Zhong, Ziming Liu, Max Tegmark, Jacob Andreas
tl;dr: We find that neural networks do not always rediscover known algorithms (Clock), but also discover new ones (Pizza), with modular addition as a prototypical example.
Do neural networks, trained on well-understood algorithmic tasks, reliably rediscover known algorithms? Several recent studies, on tasks ranging from group operations to in-context linear regression, have suggested that the answer is yes. Using modular addition as a prototypical problem, we show that algorithm discovery in neural networks is sometimes more complex: small changes to model hyperparameters and initializations can induce discovery of qualitatively different algorithms from a fixed training set, and even learning of multiple different solutions in parallel. In modular addition, we specifically show that models learn a known *Clock* algorithm, a previously undescribed, less intuitive, but comprehensible procedure we term the *Pizza* algorithm, and a variety of even more complex procedures. Our results show that even simple learning problems can admit a surprising diversity of solutions, motivating the development of new tools for mechanistically characterizing the behavior of neural networks across the algorithmic phase space.
Kamil Dreczkowski, Antoine Grosnit, Haitham Bou Ammar
tl;dr: A library offering modular implementation of combinatorial and mixed-space Bayesian optimisation solvers along for benchmarking on real world tasks.
This paper introduces a modular framework for Mixed-variable and Combinatorial Bayesian Optimization (MCBO) to address the lack of systematic benchmarking and standardized evaluation in the field. Current MCBO papers often introduce non-diverse or non-standard benchmarks to evaluate their methods, impeding the proper assessment of different MCBO primitives and their combinations. Additionally, papers introducing a solution for a single MCBO primitive often omit benchmarking against baselines that utilize the same methods for the remaining primitives. This omission is primarily due to the significant implementation overhead involved, resulting in a lack of controlled assessments and an inability to showcase the merits of a contribution effectively. To overcome these challenges, our proposed framework enables an effortless combination of Bayesian Optimization components, and provides a diverse set of synthetic and real-world benchmarking tasks. Leveraging this flexibility, we implement 47 novel MCBO algorithms and benchmark them against seven existing MCBO solvers and five standard black-box optimization algorithms on ten tasks, conducting over 4000 experiments. Our findings reveal a superior combination of MCBO primitives outperforming existing approaches and illustrate the significance of model fit and the use of a trust region. We make our MCBO library available under the MIT license at \url{https://github.com/huawei-noah/HEBO/tree/master/MCBO}.
Siliang Zeng, Chenliang Li, Alfredo Garcia, Mingyi Hong
Offline inverse reinforcement learning (Offline IRL) aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent. Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving. However, the structure of an expert's preferences implicit in observed actions is closely linked to the expert's model of the environment dynamics (i.e. the ``world''). Thus, inaccurate models of the world obtained from finite data with limited coverage could compound inaccuracy in estimated rewards. To address this issue, we propose a bi-level optimization formulation of the estimation task wherein the upper level is likelihood maximization based upon a conservative model of the expert's policy (lower level). The policy model is conservative in that it maximizes reward subject to a penalty that is increasing in the uncertainty of the estimated model of the world. We propose a new algorithmic framework to solve the bi-level optimization problem formulation and provide statistical and computational guarantees of performance for the associated optimal reward estimator. Finally, we demonstrate that the proposed algorithm outperforms the state-of-the-art offline IRL and imitation learning benchmarks by a large margin, over the continuous control tasks in MuJoCo and different datasets in the D4RL benchmark.
Eric Nguyen, Michael Poli, Marjan Faizi, Armin W Thomas, Michael Wornow, Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton M. Rabideau, Yoshua Bengio, Stefano Ermon, Christopher Re, Stephen Baccus
tl;dr: HyenaDNA is a genomic foundation model trained on the human genome using a context length of 450k tokens.
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers or fixed k-mers to aggregate meaningful DNA units, losing single nucleotide resolution (i.e. DNA "characters") where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyena’s new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level – an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data.1 On the GenomicBenchmarks, HyenaDNA surpasses SotA on 7 of 8 datasets on average by +10 accuracy points. Code at https://github.com/HazyResearch/hyena-dna.
Shuzheng Si, Wentao Ma, Haoyu Gao, Yuchuan Wu, Ting-En Lin, Yinpei Dai, Hangyu Li, Rui Yan, Fei Huang, Yongbin Li
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken con- versation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. Our dataset, code, and leaderboard are available at https://spokenwoz.github.io/SpokenWOZ-github.io/.
Tonghan Wang, Paul Duetting, Dmitry Ivanov, Inbal Talgam-Cohen, David C. Parkes
tl;dr: We initiate the study of deep learning for the automated design of optimal contracts by introducing discontinuity into fully-connected networks with ReLU activation to better model the contractual agreements between the principal and the agent.
Contract design involves a principal who establishes contractual agreements about payments for outcomes that arise from the actions of an agent. In this paper, we initiate the study of deep learning for the automated design of optimal contracts. We introduce a novel representation: the Discontinuous ReLU (DeLU) network, which models the principal's utility as a discontinuous piecewise affine function of the design of a contract where each piece corresponds to the agent taking a particular action. DeLU networks implicitly learn closed-form expressions for the incentive compatibility constraints of the agent and the utility maximization objective of the principal, and support parallel inference on each piece through linear programming or interior-point methods that solve for optimal contracts. We provide empirical results that demonstrate success in approximating the principal's utility function with a small number of training samples and scaling to find approximately optimal contracts on problems with a large number of actions and outcomes.
Jieming Cui, Ziren Gong, Baoxiong Jia, Siyuan Huang, Zilong Zheng, Jianzhu Ma, Yixin Zhu
The challenge of replicating research results has posed a significant impediment to the field of molecular biology. The advent of modern intelligent systems has led to notable progress in various domains. Consequently, we embarked on an investigation of intelligent monitoring systems as a means of tackling the issue of the reproducibility crisis. Specifically, we first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective. This dataset comprises fine-grained hierarchical annotations intended for the purpose of studying activity understanding in BioLab. Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings. Finally, we provide a thorough experimental evaluation of contemporary video understanding models and highlight their limitations in this specialized domain to identify potential avenues for future research. We hope \dataset with associated benchmarks may garner increased focus on modern AI techniques in the realm of molecular biology.
Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, Jianfeng Gao
tl;dr: We show Straight-Through works as a first-order approximation of the gradient and propose ReinMax, which achieves second-order accuracy with negligible computation overheads.
Backpropagation, the cornerstone of deep learning, is limited to computing gradients for continuous variables. This limitation poses challenges for problems involving discrete latent variables. To address this issue, we propose a novel approach to approximate the gradient of parameters involved in generating discrete latent variables. First, we examine the widely used Straight-Through (ST) heuristic and demonstrate that it works as a first-order approximation of the gradient. Guided by our findings, we propose ReinMax, which achieves second-order accuracy by integrating Heun’s method, a second-order numerical method for solving ODEs. ReinMax does not require Hessian or other second-order derivatives, thus having negligible computation overheads. Extensive experimental results on various tasks demonstrate the superiority of ReinMax over the state of the art.
Jiachang Liu, Sam Rosen, Chudi Zhong, Cynthia Rudin
We consider an important problem in scientific discovery, namely identifying sparse governing equations for nonlinear dynamical systems. This involves solving sparse ridge regression problems to provable optimality in order to determine which terms drive the underlying dynamics. We propose a fast algorithm, OKRidge, for sparse ridge regression, using a novel lower bound calculation involving, first, a saddle point formulation, and from there, either solving (i) a linear system or (ii) using an ADMM-based approach, where the proximal operators can be efficiently evaluated by solving another linear system and an isotonic regression problem. We also propose a method to warm-start our solver, which leverages a beam search. Experimentally, our methods attain provable optimality with run times that are orders of magnitude faster than those of the existing MIP formulations solved by the commercial solver Gurobi.
Fatih Dinc, Adam Shai, Mark Schnitzer, Hidenori Tanaka
Advances in optical and electrophysiological recording technologies have made it possible to record the dynamics of thousands of neurons, opening up new possibilities for interpreting and controlling large neural populations in behaving animals. A promising way to extract computational principles from these large datasets is to train data-constrained recurrent neural networks (dRNNs). Performing this training in real-time could open doors for research techniques and medical applications to model and control interventions at single-cell resolution and drive desired forms of animal behavior. However, existing training algorithms for dRNNs are inefficient and have limited scalability, making it a challenge to analyze large neural recordings even in offline scenarios. To address these issues, we introduce a training method termed Convex Optimization of Recurrent Neural Networks (CORNN). In studies of simulated recordings, CORNN attained training speeds $\sim$100-fold faster than traditional optimization approaches while maintaining or enhancing modeling accuracy. We further validated CORNN on simulations with thousands of cells that performed simple computations such as those of a 3-bit flip-flop or the execution of a timed response. Finally, we showed that CORNN can robustly reproduce network dynamics and underlying attractor structures despite mismatches between generator and inference models, severe subsampling of observed neurons, or mismatches in neural time-scales. Overall, by training dRNNs with millions of parameters in subminute processing times on a standard computer, CORNN constitutes a first step towards real-time network reproduction constrained on large-scale neural recordings and a powerful computational tool for advancing the understanding of neural computation.
Marcus Triplett, Marta Agnieszka Gajowa, Hillel Adesnik, Liam Paninski
tl;dr: A Bayesian approach to optimising stimulation parameters significantly improves the precision of two-photon optogenetics
Two-photon optogenetics has transformed our ability to probe the structure and function of neural circuits. However, achieving precise optogenetic control of neural ensemble activity has remained fundamentally constrained by the problem of off-target stimulation (OTS): the inadvertent activation of nearby non-target neurons due to imperfect confinement of light onto target neurons. Here we propose a novel computational approach to this problem called Bayesian target optimisation. Our approach uses nonparametric Bayesian inference to model neural responses to optogenetic stimulation, and then optimises the laser powers and optical target locations needed to achieve a desired activity pattern with minimal OTS. We validate our approach in simulations and using data from in vitro experiments, showing that Bayesian target optimisation considerably reduces OTS across all conditions we test. Together, these results establish our ability to overcome OTS, enabling optogenetic stimulation with substantially improved precision.
Kevin Fu Jiang, Weixin Liang, James Zou, Yongchan Kwon
tl;dr: We propose OpenDataVal, an easy-to-use and unified benchmark framework for data valuation.
Assessing the quality and impact of individual data points is critical for improving model performance and mitigating undesirable biases within the training dataset. Several data valuation algorithms have been proposed to quantify data quality, however, there lacks a systemic and standardized benchmarking system for data valuation. In this paper, we introduce *OpenDataVal*, an easy-to-use and unified benchmark framework that empowers researchers and practitioners to apply and compare various data valuation algorithms. *OpenDataVal* provides an integrated environment that includes (i) a diverse collection of image, natural language, and tabular datasets, (ii) implementations of eleven different state-of-the-art data valuation algorithms, and (iii) a prediction model API that can import any models in scikit-learn. Furthermore, we propose four downstream machine learning tasks for evaluating the quality of data values. We perform benchmarking analysis using *OpenDataVal*, quantifying and comparing the efficacy of state-of-the-art data valuation approaches. We find that no single algorithm performs uniformly best across all tasks, and an appropriate algorithm should be employed for a user's downstream task. *OpenDataVal* is publicly available at https://opendataval.github.io with comprehensive documentation. Furthermore, we provide a leaderboard where researchers can evaluate the effectiveness of their own data valuation algorithms.
Jungwoo Oh, Gyubok Lee, Seongsu Bae, Joon-myoung Kwon, Edward Choi
tl;dr: The first question answering dataset specifically designed for electrocardiogram.
Question answering (QA) in the field of healthcare has received much attention due to significant advancements in natural language processing. However, existing healthcare QA datasets primarily focus on medical images, clinical notes, or structured electronic health record tables. This leaves the vast potential of combining electrocardiogram (ECG) data with these systems largely untapped. To address this gap, we present ECG-QA, the first QA dataset specifically designed for ECG analysis. The dataset comprises a total of 70 question templates that cover a wide range of clinically relevant ECG topics, each validated by an ECG expert to ensure their clinical utility. As a result, our dataset includes diverse ECG interpretation questions, including those that require a comparative analysis of two different ECGs. In addition, we have conducted numerous experiments to provide valuable insights for future research directions. We believe that ECG-QA will serve as a valuable resource for the development of intelligent QA systems capable of assisting clinicians in ECG interpretations.
Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, Subbarao Kambhampati
Generating plans of action, and reasoning about change have long been considered a core competence of intelligent agents. It is thus no surprise that evaluating the planning and reasoning capabilities of large language models (LLMs) has become a hot topic of research. Most claims about LLM planning capabilities are however based on common sense tasks–where it becomes hard to tell whether LLMs are planning or merely retrieving from their vast world knowledge. There is a strong need for systematic and extensible planning benchmarks with sufficient diversity to evaluate whether LLMs have innate planning capabilities. Motivated by this, we propose PlanBench, an extensible benchmark suite based on the kinds of domains used in the automated planning community, especially in the International Planning Competition, to test the capabilities of LLMs in planning or reasoning about actions and change. PlanBench provides sufficient diversity in both the task domains and the specific planning capabilities. Our studies also show that on many critical capabilities–including plan generation–LLM performance falls quite short, even with the SOTA models. PlanBench can thus function as a useful marker of progress of LLMs in planning and reasoning.
Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, Thomas Hofmann
Autoregressive Transformers adopted in Large Language Models (LLMs) are hard to scale to long sequences. Despite several works trying to reduce their computational cost, most of LLMs still adopt attention layers between all pairs of tokens in the sequence, thus incurring a quadratic cost. In this study, we present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness, resulting in reduced memory and computational requirements during inference. Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context at any point across the generation process. By doing so, our approach not only addresses performance concerns but also enhances interpretability, providing valuable insight into the model's decision-making process. Our technique can be applied to existing pre-trained models through a straightforward fine-tuning process, and the pruning strength can be specified by a sparsity parameter. Notably, our empirical findings demonstrate that we can effectively prune up to 80\% of the context without significant performance degradation on downstream tasks, offering a valuable tool for mitigating inference costs. Our reference implementation achieves up to $2\times$ increase in inference throughput and even greater memory savings.
Zhijian Duan, Haoran Sun, Yurong Chen, Xiaotie Deng
tl;dr: We propose AMenuNet, a scalable neural network for DSIC affine maximizer auction design.
Automated auction design aims to find empirically high-revenue mechanisms through machine learning. Existing works on multi item auction scenarios can be roughly divided into RegretNet-like and affine maximizer auctions (AMAs) approaches. However, the former cannot strictly ensure dominant strategy incentive compatibility (DSIC), while the latter faces scalability issue due to the large number of allocation candidates. To address these limitations, we propose AMenuNet, a scalable neural network that constructs the AMA parameters (even including the allocation menu) from bidder and item representations. AMenuNet is always DSIC and individually rational (IR) due to the properties of AMAs, and it enhances scalability by generating candidate allocations through a neural network. Additionally, AMenuNet is permutation equivariant, and its number of parameters is independent of auction scale. We conduct extensive experiments to demonstrate that AMenuNet outperforms strong baselines in both contextual and non-contextual multi-item auctions, scales well to larger auctions, generalizes well to different settings, and identifies useful deterministic allocations. Overall, our proposed approach offers an effective solution to automated DSIC auction design, with improved scalability and strong revenue performance in various settings.
Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, Julia E Vogt
tl;dr: We propose a new generative hierarchical clustering model that learns a flexible tree-based posterior distribution over latent variables.
We propose Tree Variational Autoencoder (TreeVAE), a new generative hierarchical clustering model that learns a flexible tree-based posterior distribution over latent variables. TreeVAE hierarchically divides samples according to their intrinsic characteristics, shedding light on hidden structures in the data. It adapts its architecture to discover the optimal tree for encoding dependencies between latent variables. The proposed tree-based generative architecture enables lightweight conditional inference and improves generative performance by utilizing specialized leaf decoders. We show that TreeVAE uncovers underlying clusters in the data and finds meaningful hierarchical relations between the different groups on a variety of datasets, including real-world imaging data. We present empirically that TreeVAE provides a more competitive log-likelihood lower bound than the sequential counterparts. Finally, due to its generative nature, TreeVAE is able to generate new samples from the discovered clusters via conditional sampling.
Hamed Nilforoshan, Michael Moor, Yusuf H Roohani, Yining Chen, Anja Šurina, Michihiro Yasunaga, Sara Oblak, Jure Leskovec
tl;dr: A personalized causal effect prediction framework that can generalize to novel treatments that did not exist during training (e.g. a newly invented drug that has never been prescribed before)
Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an existing intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel interventions (e.g., a newly invented drug), which these methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of a novel intervention. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention, its recipients, and its nonrecipients. By leveraging both intervention information (e.g., a drug's attributes) and individual features (e.g., a patient's history), CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines trained directly on data from the test interventions.
Seohong Park, Dibya Ghosh, Benjamin Eysenbach, Sergey Levine
tl;dr: We propose a simple hierarchical offline goal-conditioned RL method that extracts both high- and low-level policies from a single value function.
Unsupervised pre-training has recently become the bedrock for computer vision and natural language processing. In reinforcement learning (RL), goal-conditioned RL can potentially provide an analogous self-supervised approach for making use of large quantities of unlabeled (reward-free) data. However, building effective algorithms for goal-conditioned RL that can learn directly from diverse offline data is challenging, because it is hard to accurately estimate the exact value function for faraway goals. Nonetheless, goal-reaching problems exhibit structure, such that reaching distant goals entails first passing through closer subgoals. This structure can be very useful, as assessing the quality of actions for nearby goals is typically easier than for more distant goals. Based on this idea, we propose a hierarchical algorithm for goal-conditioned RL from offline data. Using one action-free value function, we learn two policies that allow us to exploit this structure: a high-level policy that treats states as actions and predicts (a latent representation of) a subgoal and a low-level policy that predicts the action for reaching this subgoal. Through analysis and didactic examples, we show how this hierarchical decomposition makes our method robust to noise in the estimated value function. We then apply our method to offline goal-reaching benchmarks, showing that our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data. Our code is available at https://seohong.me/projects/hiql/
Clement Benard, Brian Staber, Sébastien Da Veiga
tl;dr: Stein thinning, an algorithm to post-treat MCMC outputs, often exhibits strong pathologies, that are carefully analyzed to propose an improved regularized algorithm.
Stein thinning is a promising algorithm proposed by (Riabiz et al., 2022) for post-processing outputs of Markov chain Monte Carlo (MCMC). The main principle is to greedily minimize the kernelized Stein discrepancy (KSD), which only requires the gradient of the log-target distribution, and is thus well-suited for Bayesian inference. The main advantages of Stein thinning are the automatic remove of the burn-in period, the correction of the bias introduced by recent MCMC algorithms, and the asymptotic properties of convergence towards the target distribution. Nevertheless, Stein thinning suffers from several empirical pathologies, which may result in poor approximations, as observed in the literature. In this article, we conduct a theoretical analysis of these pathologies, to clearly identify the mechanisms at stake, and suggest improved strategies. Then, we introduce the regularized Stein thinning algorithm to alleviate the identified pathologies. Finally, theoretical guarantees and extensive experiments show the high efficiency of the proposed algorithm. An implementation of regularized Stein thinning as the kernax library in python and JAX is available at https://gitlab.com/drti/kernax.
Ziyan Wang, Hao Wang
tl;dr: We propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct.
Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at https://github.com/Wang-ML-Lab/variational-imbalanced-regression.
Xiao Zang, Miao Yin, Jinqi Xiao, Saman Zonouz, Bo Yuan
Motion planning, which aims to find a high-quality collision-free path in the configuration space, is a fundamental task in robotic systems. Recently, learning-based motion planners, especially the graph neural network-powered, have shown promising planning performance. However, though the state-of-the-art GNN planner can efficiently extract and learn graph information, its inherent mechanism is not well suited for graph search process, hindering its further performance improvement. To address this challenge and fully unleash the potential of GNN in motion planning, this paper proposes GraphMP, a neural motion planner for both low and high-dimensional planning tasks. With the customized model architecture and training mechanism design, GraphMP can simultaneously perform efficient graph pattern extraction and graph search processing, leading to strong planning performance. Experiments on a variety of environments, ranging from 2D Maze to 14D dual KUKA robotic arm, show that our proposed GraphMP achieves significant improvement on path quality and planning speed over the state-of-the-art learning-based and classical planners; while preserving the competitive success rate.
Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang
tl;dr: Transformers fail to robustly keep track of a single bit of memory. The glitches are surprisingly subtle and persistent. We hypothesize that this accounts for some "closed-domain hallucinations".
Why do large language models sometimes output factual inaccuracies and exhibit erroneous reasoning? The brittleness of these models, particularly when executing long chains of reasoning, currently seems to be an inevitable price to pay for their advanced capabilities of coherently synthesizing knowledge, pragmatics, and abstract thought. Towards making sense of this fundamentally unsolved problem, this work identifies and analyzes the phenomenon of _attention glitches_, in which the Transformer architecture's inductive biases intermittently fail to capture robust reasoning. To isolate the issue, we introduce _flip-flop language modeling_ (FFLM), a parametric family of synthetic benchmarks designed to probe the extrapolative behavior of neural language models. This simple generative task requires a model to copy binary symbols over long-range dependencies, ignoring the tokens in between. We find that Transformer FFLMs suffer from a long tail of sporadic reasoning errors, some of which we can eliminate using various regularization techniques. Our preliminary mechanistic analyses show why the remaining errors may be very difficult to diagnose and resolve. We hypothesize that attention glitches account for (some of) the closed-domain hallucinations in natural LLMs.
Gyeongsik Moon, Shunsuke Saito, Weipeng Xu, Rohan Joshi, Julia Buffalini, Harley Bellan, Nicholas Matthew Rosen, Jesse Richardson, Mallorie Mize, Philippe De Bree, Tomas Simon, Bo Peng, Shubham Garg, Kevyn Alex Anthony McPhail, Takaaki Shiratori
tl;dr: We introduce a new dataset of 3D interacting hands.
The two-hand interaction is one of the most challenging signals to analyze due to the self-similarity, complicated articulations, and occlusions of hands. Although several datasets have been proposed for the two-hand interaction analysis, all of them do not achieve 1) diverse and realistic image appearances and 2) diverse and large-scale groundtruth (GT) 3D poses at the same time. In this work, we propose Re:InterHand, a dataset of relighted 3D interacting hands that achieve the two goals. To this end, we employ a state-of-the-art hand relighting network with our accurately tracked two-hand 3D poses. We compare our Re:InterHand with existing 3D interacting hands datasets and show the benefit of it. Our Re:InterHand is available in https://mks0601.github.io/ReInterHand/
William Merrill, Ashish Sabharwal
tl;dr: We prove that any function a transformer computes can be expressed in first-order logic with majority quantifiers.
One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformer classifiers can be equivalently expressed in a generalization of first-order logic. However, finite-precision transformers are a weak transformer variant because, as we show, a single head can only attend to a constant number of tokens and, in particular, cannot represent uniform attention. Since attending broadly is a core capability for transformers, we ask whether a minimally more expressive model that can attend universally can also be characterized in logic. To this end, we analyze transformers whose forward pass is computed in $\log n$ precision on contexts of length $n$. We prove any log-precision transformer classifier can be equivalently expressed as a first-order logic sentence that, in addition to standard universal and existential quantifiers, may also contain majority-vote quantifiers. This is the tightest known upper bound and first logical characterization of log-precision transformers.
Ajay Subramanian, Elena Sizikova, Najib J. Majaj, Denis G. Pelli
tl;dr: Critical band masking, a tool from neuroscience, reveals a large difference in the spatial frequency information used by humans and neural networks to recognize objects in natural images.
What spatial frequency information do humans and neural networks use to recognize objects? In neuroscience, critical band masking is an established tool that can reveal the frequency-selective filters used for object recognition. Critical band masking measures the sensitivity of recognition performance to noise added at each spatial frequency. Existing critical band masking studies show that humans recognize periodic patterns (gratings) and letters by means of a spatial-frequency filter (or "channel") that has a frequency bandwidth of one octave (doubling of frequency). Here, we introduce critical band masking as a task for network-human comparison and test 14 humans and 76 neural networks on 16-way ImageNet categorization in the presence of narrowband noise. We find that humans recognize objects in natural images using the same one-octave-wide channel that they use for letters and gratings, making it a canonical feature of human object recognition. Unlike humans, the neural network channel is very broad, 2-4 times wider than the human channel. This means that the network channel extends to frequencies higher and lower than those that humans are sensitive to. Thus, noise at those frequencies will impair network performance and spare human performance. Adversarial and augmented-image training are commonly used to increase network robustness and shape bias. Does this training align network and human object recognition channels? Three network channel properties (bandwidth, center frequency, peak noise sensitivity) correlate strongly with shape bias (51% variance explained) and robustness of adversarially-trained networks (66% variance explained). Adversarial training increases robustness but expands the channel bandwidth even further beyond the human bandwidth. Thus, critical band masking reveals that the network channel is more than twice as wide as the human channel, and that adversarial training only makes it worse. Networks with narrower channels might be more robust.
Kai Han, You Wu, He Huang, Shuang Cui
We revisit the classical problem of designing Budget-Feasible Mechanisms (BFMs) for submodular valuation functions, which has been extensively studied since the seminal paper of Singer [FOCS'10] due to its wide applications in crowdsourcing and social marketing. We propose TripleEagle, a novel algorithmic framework for designing BFMs, based on which we present several simple yet effective BFMs that achieve better approximation ratios than the state-of-the-art work. Moreover, our BFMs are the first in the literature to achieve linear complexities while ensuring obvious strategyproofness, making them more practical than the previous BFMs. We conduct extensive experiments to evaluate the empirical performance of our BFMs, and the experimental results strongly demonstrate the efficiency and effectiveness of our approach.
Siu Lun Chau, Krikamol Muandet, Dino Sejdinovic
tl;dr: A new SHAP algorithm design for GPs that take into account the analytical covariance and result in explanations as Gaussian processes. A Shapley kernel is also proposed for predicting Shapley values of new observations.
We present a novel approach for explaining Gaussian processes (GPs) that can utilize the full analytical covariance structure present in GPs. Our method is based on the popular solution concept of Shapley values extended to stochastic cooperative games, resulting in explanations that are random variables. The GP explanations generated using our approach satisfy similar favorable axioms to standard Shapley values and possess a tractable covariance function across features and data observations. This covariance allows for quantifying explanation uncertainties and studying the statistical dependencies between explanations. We further extend our framework to the problem of predictive explanation, and propose a Shapley prior over the explanation function to predict Shapley values for new data based on previously computed ones. Our extensive illustrations demonstrate the effectiveness of the proposed approach.
Yuanqi Du, Yingheng Wang, Yining Huang, Jianan Canal Li, Yanqiao Zhu, Tian Xie, Chenru Duan, John Gregoire, Carla P Gomes
We introduce M$^2$Hub, a toolkit for advancing machine learning in materials discovery. Machine learning has achieved remarkable progress in modeling molecular structures, especially biomolecules for drug discovery. However, the development of machine learning approaches for modeling materials structures lag behind, which is partly due to the lack of an integrated platform that enables access to diverse tasks for materials discovery. To bridge this gap, M$^2$Hub will enable easy access to materials discovery tasks, datasets, machine learning methods, evaluations, and benchmark results that cover the entire workflow. Specifically, the first release of M$^2$Hub focuses on three key stages in materials discovery: virtual screening, inverse design, and molecular simulation, including 9 datasets that covers 6 types of materials with 56 tasks across 8 types of material properties. We further provide 2 synthetic datasets for the purpose of generative tasks on materials. In addition to random data splits, we also provide 3 additional data partitions to reflect the real-world materials discovery scenarios. State-of-the-art machine learning methods (including those are suitable for materials structures but never compared in the literature) are benchmarked on representative tasks. Our codes and library are publicly available at \url{https://github.com/yuanqidu/M2Hub}.
Dhawal Gupta, Yash Chandak, Scott M. Jordan, Philip S. Thomas, Bruno Castro da Silva
Designing reward functions for efficiently guiding reinforcement learning (RL) agents toward specific behaviors is a complex task. This is challenging since it requires the identification of reward structures that are not sparse and that avoid inadvertently inducing undesirable behaviors. Naively modifying the reward structure to offer denser and more frequent feedback can lead to unintended outcomes and promote behaviors that are not aligned with the designer's intended goal. Although potential-based reward shaping is often suggested as a remedy, we systematically investigate settings where deploying it often significantly impairs performance. To address these issues, we introduce a new framework that uses a bi-level objective to learn \emph{behavior alignment reward functions}. These functions integrate auxiliary rewards reflecting a designer's heuristics and domain knowledge with the environment's primary rewards. Our approach automatically determines the most effective way to blend these types of feedback, thereby enhancing robustness against heuristic reward misspecification. Remarkably, it can also adapt an agent's policy optimization process to mitigate suboptimalities resulting from limitations and biases inherent in the underlying RL algorithms. We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges. We investigate heuristic auxiliary rewards of varying quality---some of which are beneficial and others detrimental to the learning process. Our results show that our framework offers a robust and principled way to integrate designer-specified heuristics. It not only addresses key shortcomings of existing approaches but also consistently leads to high-performing solutions, even when given misaligned or poorly-specified auxiliary reward functions.
Soukayna Mouatadid, Paulo Orenstein, Genevieve Elaine Flaspohler, Miruna Oprescu, Judah Cohen, Franklyn Wang, Sean Edward Knight, Maria Geogdzhayeva, Samuel James Levang, Ernest Fraenkel, Lester Mackey
Subseasonal forecasting of the weather two to six weeks in advance is critical for resource allocation and climate adaptation but poses many challenges for the forecasting community. At this forecast horizon, physics-based dynamical models have limited skill, and the targets for prediction depend in a complex manner on both local weather variables and global climate variables. Recently, machine learning methods have shown promise in advancing the state of the art but only at the cost of complex data curation, integrating expert knowledge with aggregation across multiple relevant data sources, file formats, and temporal and spatial resolutions. To streamline this process and accelerate future development, we introduce SubseasonalClimateUSA, a curated dataset for training and benchmarking subseasonal forecasting models in the United States. We use this dataset to benchmark a diverse suite of models, including operational dynamical models, classical meteorological baselines, and ten state-of-the-art machine learning and deep learning-based methods from the literature. Overall, our benchmarks suggest simple and effective ways to extend the accuracy of current operational models. SubseasonalClimateUSA is regularly updated and accessible via the https://github.com/microsoft/subseasonal_data/ Python package.
Feynman T. Liang, Liam Hodgkinson, Michael W. Mahoney
tl;dr: Develops an algebra for analyzing tails and operationalizes it in a PPL compiler to automatically inform the design of density approximator with provably calibrated tails.
Despite the successes of probabilistic models based on passing noise through neural networks, recent work has identified that such methods often fail to capture tail behavior accurately---unless the tails of the base distribution are appropriately calibrated. To overcome this deficiency, we propose a systematic approach for analyzing the tails of random variables, and we illustrate how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language (PPL) compiler. To characterize how the tails change under various operations, we develop an algebra which acts on a three-parameter family of tail asymptotics and which is based on the generalized Gamma distribution. Our algebraic operations are closed under addition and multiplication; they are capable of distinguishing sub-Gaussians with differing scales; and they handle ratios sufficiently well to reproduce the tails of most important statistical distributions directly from their definitions. Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference (VI) tasks.
Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh B Nachimuthu, Michael Jacob Mendelson, Blake Aaron Richards, Matthew G Perich, Guillaume Lajoie, Eva L Dyer
tl;dr: This paper introduces a scalable and unified learning framework for efficient, large-scale neural decoding across diverse multi-lab multi-animal multi-session neural recordings.
Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both the model size and the datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale for neural decoding models.
Morris Alper, Hadar Averbuch-Elor
Although the mapping between sound and meaning in human language is assumed to be largely arbitrary, research in cognitive science has shown that there are non-trivial correlations between particular sounds and meanings across languages and demographic groups, a phenomenon known as sound symbolism. Among the many dimensions of meaning, sound symbolism is particularly salient and well-demonstrated with regards to cross-modal associations between language and the visual domain. In this work, we address the question of whether sound symbolism is reflected in vision-and-language models such as CLIP and Stable Diffusion. Using zero-shot knowledge probing to investigate the inherent knowledge of these models, we find strong evidence that they do show this pattern, paralleling the well-known kiki-bouba effect in psycholinguistics. Our work provides a novel method for demonstrating sound symbolism and understanding its nature using computational tools. Our code will be made publicly available.
Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, Reihaneh Rabbany
tl;dr: TGB is a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs
We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/.
Rohan Alur, Loren Laine, Darrick K Li, Manish Raghavan, Devavrat Shah, Dennis Shung
tl;dr: We develop a statistical framework to assess whether human experts add value which could not be captured by any learning algorithm for a given prediction task.
High-stakes prediction tasks (e.g., patient diagnosis) are often handled by trained human experts. A common source of concern about automation in these settings is that experts may exercise intuition that is difficult to model and/or have access to information (e.g., conversations with a patient) that is simply unavailable to a would-be algorithm. This raises a natural question whether human experts add value which could not be captured by an algorithmic predictor. We develop a statistical framework under which we can pose this question as a natural hypothesis test. Indeed, as our framework highlights, detecting human expertise is more subtle than simply comparing the accuracy of expert predictions to those made by a particular learning algorithm. Instead, we propose a simple procedure which tests whether expert predictions are statistically independent from the outcomes of interest after conditioning on the available inputs (‘features’). A rejection of our test thus suggests that human experts may add value to any algorithm trained on the available data, and has direct implications for whether human-AI ‘complementarity’ is achievable in a given prediction task. We highlight the utility of our procedure using admissions data collected from the emergency department of a large academic hospital system, where we show that physicians’ admit/discharge decisions for patients with acute gastrointestinal bleeding (AGIB) appear to be incorporating information that is not available to a standard algorithmic screening tool. This is despite the fact that the screening tool is arguably more accurate than physicians’ discretionary decisions, highlighting that – even absent normative concerns about accountability or interpretability – accuracy is insufficient to justify algorithmic automation.
Xiaolei Ru, Xin-Ya Zhang, Zijia Liu, Jack Murdoch Moore, Gang Yan
tl;dr: Directed coupled network reconstruction based on time series generated by neuronal dynamics.
We consider the problem of reconstructing coupled networks (e.g., biological neural networks) connecting large numbers of variables (e.g.,nerve cells), of which state evolution is governed by dissipative dynamics consisting of strong self-drive (dominants the evolution) and weak coupling-drive. The core difficulty is sparseness of coupling effect that emerges (the coupling force is significant) only momentarily and otherwise remains quiescent in time series (e.g., neuronal activity sequence). Here we learn the idea from attention mechanism to guide the classifier to make inference focusing on the critical regions of time series data where coupling effect may manifest. Specifically, attention coefficients are assigned autonomously by artificial neural networks trained to maximise the Attentive Transfer Entropy (ATEn), which is a novel generalization of the iconic transfer entropy metric. Our results show that, without any prior knowledge of dynamics, ATEn explicitly identifies areas where the strength of coupling-drive is distinctly greater than zero. This innovation substantially improves reconstruction performance for both synthetic and real directed coupling networks using data generated by neuronal models widely used in neuroscience.
Tianwei Ni, Michel Ma, Benjamin Eysenbach, Pierre-Luc Bacon
tl;dr: Transformers can help learn long-term memory but not long-term credit assignment in online model-free RL.
Reinforcement learning (RL) algorithms face two distinct challenges: learning effective representations of past and present observations, and determining how actions influence future returns. Both challenges involve modeling long-term dependencies. The Transformer architecture has been very successful to solve problems that involve long-term dependencies, including in the RL domain. However, the underlying reason for the strong performance of Transformer-based RL methods remains unclear: is it because they learn effective memory, or because they perform effective credit assignment? After introducing formal definitions of memory length and credit assignment length, we design simple configurable tasks to measure these distinct quantities. Our empirical results reveal that Transformers can enhance the memory capability of RL algorithms, scaling up to tasks that require memorizing observations $1500$ steps ago. However, Transformers do not improve long-term credit assignment. In summary, our results provide an explanation for the success of Transformers in RL, while also highlighting an important area for future research and benchmark design. Our code is open-sourced at https://github.com/twni2016/Memory-RL.
Michalis Titsias
We define an optimal preconditioning for the Langevin diffusion by analytically optimizing the expected squared jumped distance. This yields as the optimal preconditioning an inverse Fisher information covariance matrix, where the covariance matrix is computed as the outer product of log target gradients averaged under the target. We apply this result to the Metropolis adjusted Langevin algorithm (MALA) and derive a computationally efficient adaptive MCMC scheme that learns the preconditioning from the history of gradients produced as the algorithm runs. We show in several experiments that the proposed algorithm is very robust in high dimensions and significantly outperforms other methods, including a closely related adaptive MALA scheme that learns the preconditioning with standard adaptive MCMC as well as the position-dependent Riemannian manifold MALA sampler.
Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, Gal Chechik
Text-conditioned image generation models often generate incorrect associations between entities and their visual attributes. This reflects an impaired mapping between linguistic binding of entities and modifiers in the prompt and visual binding of the corresponding elements in the generated image. As one example, a query like ``a pink sunflower and a yellow flamingo'' may incorrectly produce an image of a yellow sunflower and a pink flamingo. To remedy this issue, we propose SynGen, an approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Specifically, we encourage large overlap between attention maps of entities and their modifiers, and small overlap with other entities and modifier words. The loss is optimized during inference, without retraining or fine-tuning the model. Human evaluation on three datasets, including one new and challenging set, demonstrate significant improvements of SynGen compared with current state of the art methods. This work highlights how making use of sentence structure during inference can efficiently and substantially improve the faithfulness of text-to-image generation.
Rachel Ward, Tamara G. Kolda
We consider alternating gradient descent (AGD) with fixed step size applied to the asymmetric matrix factorization objective. We show that, for a rank-$r$ matrix $A \in \mathbb{R}^{m \times n}$, $T = C ( \frac{\sigma_1(A)}{\sigma_r(A)} )^2 \log(1/\epsilon)$ iterations of alternating gradient descent suffice to reach an $\epsilon$-optimal factorization $\| A - X_{T} Y_{T}' \|^2 \leq \epsilon \| A \|^2$ with high probability starting from an atypical random initialization. The factors have rank $d \geq r$ so that $X_{T}\in \mathbb{R}^{m \times d}$ and $Y_{T} \in\mathbb{R}^{n \times d}$, and mild overparameterization suffices for the constant $C$ in the iteration complexity $T$ to be an absolute constant. Experiments suggest that our proposed initialization is not merely of theoretical benefit, but rather significantly improves the convergence rate of gradient descent in practice. Our proof is conceptually simple: a uniform Polyak-Lojasiewicz (PL) inequality and uniform Lipschitz smoothness constant are guaranteed for a sufficient number of iterations, starting from our random initialization. Our proof method should be useful for extending and simplifying convergence analyses for a broader class of nonconvex low-rank factorization problems.
Jaewook J. Suh, Jisun Park, Ernest K. Ryu
tl;dr: We present continuous-time analyses of anchor acceleration for minimax optimization and monotone inclusion problems.
Recently, the anchor acceleration, an acceleration mechanism distinct from Nesterov's, has been discovered for minimax optimization and fixed-point problems, but its mechanism is not understood well, much less so than Nesterov acceleration. In this work, we analyze continuous-time models of anchor acceleration. We provide tight, unified analyses for characterizing the convergence rate as a function of the anchor coefficient $\beta(t)$, thereby providing insight into the anchor acceleration mechanism and its accelerated $\mathcal{O}(1/k^2)$-convergence rate. Finally, we present an adaptive method inspired by the continuous-time analyses and establish its effectiveness through theoretical analyses and experiments.
Samuel Lanthaler, Nicholas H. Nelsen
This paper provides a comprehensive error analysis of learning with vector-valued random features (RF). The theory is developed for RF ridge regression in a fully general infinite-dimensional input-output setting, but nonetheless applies to and improves existing finite-dimensional analyses. In contrast to comparable work in the literature, the approach proposed here relies on a direct analysis of the underlying risk functional and completely avoids the explicit RF ridge regression solution formula in terms of random matrices. This removes the need for concentration results in random matrix theory or their generalizations to random operators. The main results established in this paper include strong consistency of vector-valued RF estimators under model misspecification and minimax optimal convergence rates in the well-specified setting. The parameter complexity (number of random features) and sample complexity (number of labeled data) required to achieve such rates are comparable with Monte Carlo intuition and free from logarithmic factors.
Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, Alejandro Ribeiro
tl;dr: We have developed the first two single-time-scale policy-based primal-dual algorithms for solving constrained MDPs with non-asymptotic policy last-iterate convergence.
We study the problem of computing an optimal policy of an infinite-horizon discounted constrained Markov decision process (constrained MDP). Despite the popularity of Lagrangian-based policy search methods used in practice, the oscillation of policy iterates in these methods has not been fully understood, bringing out issues such as violation of constraints and sensitivity to hyper-parameters. To fill this gap, we employ the Lagrangian method to cast a constrained MDP into a constrained saddle-point problem in which max/min players correspond to primal/dual variables, respectively, and develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy. Specifically, we first propose a regularized policy gradient primal-dual (RPG-PD) method that updates the policy using an entropy-regularized policy gradient, and the dual variable via a quadratic-regularized gradient ascent, simultaneously. We prove that the policy primal-dual iterates of RPG-PD converge to a regularized saddle point with a sublinear rate, while the policy iterates converge sublinearly to an optimal constrained policy. We further instantiate RPG-PD in large state or action spaces by including function approximation in policy parametrization, and establish similar sublinear last-iterate policy convergence. Second, we propose an optimistic policy gradient primal-dual (OPG-PD) method that employs the optimistic gradient method to update primal/dual variables, simultaneously. We prove that the policy primal-dual iterates of OPG-PD converge to a saddle point that contains an optimal constrained policy, with a linear rate. To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs. We further validate the merits and the effectiveness of our methods in computational experiments.
Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing Lu, Zhengyang Wang, Ruirui Li, Zhen Li, Monica Xiao Cheng, Rahul Goutam, Haiyang Zhang, Karthik Subbian, Suhang Wang, Yizhou Sun, Jiliang Tang, Bing Yin, Xianfeng Tang
Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based recommendation, which utilizes customer session data to predict their next interaction, has become increasingly popular. However, existing session datasets have limitations in terms of item attributes, user diversity, and dataset scale. As a result, they cannot comprehensively capture the spectrum of user behaviors and preferences. To bridge this gap, we present the Amazon Multilingual Multi-locale Shopping Session Dataset, namely Amazon-M2. It is the first multilingual dataset consisting of millions of user sessions from six different locales, where the major languages of products are English, German, Japanese, French, Italian, and Spanish. Remarkably, the dataset can help us enhance personalization and understanding of user preferences, which can benefit various existing tasks as well as enable new tasks. To test the potential of the dataset, we introduce three tasks in this work: (1) next-product recommendation, (2) next-product recommendation with domain shifts, and (3) next-product title generation. With the above tasks, we benchmark a range of algorithms on our proposed dataset, drawing new insights for further research and practice. In addition, based on the proposed dataset and tasks, we hosted a competition in the KDD CUP 2023 https://www.aicrowd.com/challenges/amazon-kdd-cup-23-multilingual-recommendation-challenge and have attracted thousands of users and submissions. The winning solutions and the associated workshop can be accessed at our website~https://kddcup23.github.io/.
Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, Ion Stoica
tl;dr: We explore the use of LLM-as-a-judge for evaluating chat assistants and show it matches human preferences with an agreement over 80%.
Evaluating large language model (LLM) based chat assistants is challenging due to their broad capabilities and the inadequacy of existing benchmarks in measuring human preferences. To address this, we explore using strong LLMs as judges to evaluate these models on more open-ended questions. We examine the usage and limitations of LLM-as-a-judge, including position, verbosity, and self-enhancement biases, as well as limited reasoning ability, and propose solutions to mitigate some of them. We then verify the agreement between LLM judges and human preferences by introducing two benchmarks: MT-bench, a multi-turn question set; and Chatbot Arena, a crowdsourced battle platform. Our results reveal that strong LLM judges like GPT-4 can match both controlled and crowdsourced human preferences well, achieving over 80\% agreement, the same level of agreement between humans. Hence, LLM-as-a-judge is a scalable and explainable way to approximate human preferences, which are otherwise very expensive to obtain. Additionally, we show our benchmark and traditional benchmarks complement each other by evaluating several variants of LLaMA and Vicuna. The MT-bench questions, 3K expert votes, and 30K conversations with human preferences are publicly available at https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge.
Liang Zhang, Junchi YANG, Amin Karbasi, Niao He
Algorithmic reproducibility measures the deviation in outputs of machine learning algorithms upon minor changes in the training process. Previous work suggests that first-order methods would need to trade-off convergence rate (gradient complexity) for better reproducibility. In this work, we challenge this perception and demonstrate that both optimal reproducibility and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems under various error-prone oracle settings. Particularly, given the inexact initialization oracle, our regularization-based algorithms achieve the best of both worlds -- optimal reproducibility and near-optimal gradient complexity -- for minimization and minimax optimization. With the inexact gradient oracle, the near-optimal guarantees also hold for minimax optimization. Additionally, with the stochastic gradient oracle, we show that stochastic gradient descent ascent is optimal in terms of both reproducibility and gradient complexity. We believe our results contribute to an enhanced understanding of the reproducibility-convergence trade-off in the context of convex optimization.
Simon Schrodi, Danny Stoll, Binxin Ru, Rhea Sanjay Sukthanker, Thomas Brox, Frank Hutter
tl;dr: We take a functional view of neural architecture search that allows us to construct highly expressive search spaces based on context-free grammars, and show that we can efficiently find well-performing architectures.
The discovery of neural architectures from simple building blocks is a long-standing goal of Neural Architecture Search (NAS). Hierarchical search spaces are a promising step towards this goal but lack a unifying search space design framework and typically only search over some limited aspect of architectures. In this work, we introduce a unifying search space design framework based on context-free grammars that can naturally and compactly generate expressive hierarchical search spaces that are 100s of orders of magnitude larger than common spaces from the literature. By enhancing and using their properties, we effectively enable search over the complete architecture and can foster regularity. Further, we propose an efficient hierarchical kernel design for a Bayesian Optimization search strategy to efficiently search over such huge spaces. We demonstrate the versatility of our search space design framework and show that our search strategy can be superior to existing NAS approaches. Code is available at https://github.com/automl/hierarchical_nas_construction.
Krunoslav Lehman Pavasovic, Alain Durmus, Umut Simsekli
A recent line of empirical studies has demonstrated that SGD might exhibit a heavy-tailed behavior in practical settings, and the heaviness of the tails might correlate with the overall performance. In this paper, we investigate the emergence of such heavy tails. Previous works on this problem only considered, up to our knowledge, online (also called single-pass) SGD, in which the emergence of heavy tails in theoretical findings is contingent upon access to an infinite amount of data. Hence, the underlying mechanism generating the reported heavy-tailed behavior in practical settings, where the amount of training data is finite, is still not well-understood. Our contribution aims to fill this gap. In particular, we show that the stationary distribution of offline (also called multi-pass) SGD exhibits ‘approximate’ power-law tails and the approximation error is controlled by how fast the empirical distribution of the training data converges to the true underlying data distribution in the Wasserstein metric. Our main takeaway is that, as the number of data points increases, offline SGD will behave increasingly ‘power-law-like’. To achieve this result, we first prove nonasymptotic Wasserstein convergence bounds for offline SGD to online SGD as the number of data points increases, which can be interesting on their own. Finally, we illustrate our theory on various experiments conducted on synthetic data and neural networks.
Bahar Taskesen, Dan Andrei Iancu, Çağıl Koçyiğit, Daniel Kuhn
Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations, subject to additive noise, with the goal of minimizing a quadratic cost function for the state and control variables. In this work, we consider a generalization of the discrete-time, finite-horizon LQG problem, where the noise distributions are unknown and belong to Wasserstein ambiguity sets centered at nominal (Gaussian) distributions. The objective is to minimize a worst-case cost across all distributions in the ambiguity set, including non-Gaussian distributions. Despite the added complexity, we prove that a control policy that is linear in the observations is optimal for this problem, as in the classic LQG problem. We propose a numerical solution method that efficiently characterizes this optimal control policy. Our method uses the Frank-Wolfe algorithm to identify the least-favorable distributions within the Wasserstein ambiguity sets and computes the controller's optimal policy using Kalman filter estimation under these distributions.
Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou
In this paper, we propose an online convex optimization approach with two different levels of adaptivity. On a higher level, our approach is agnostic to the unknown types and curvatures of the online functions, while at a lower level, it can exploit the unknown niceness of the environments and attain problem-dependent guarantees. Specifically, we obtain $\mathcal{O}(\log V_T)$, $\mathcal{O}(d \log V_T)$ and $\hat{\mathcal{O}}(\sqrt{V_T})$ regret bounds for strongly convex, exp-concave and convex loss functions, respectively, where $d$ is the dimension, $V_T$ denotes problem-dependent gradient variations and the $\hat{\mathcal{O}}(\cdot)$-notation omits $\log V_T$ factors. Our result not only safeguards the worst-case guarantees but also directly implies the small-loss bounds in analysis. Moreover, when applied to adversarial/stochastic convex optimization and game theory problems, our result enhances the existing universal guarantees. Our approach is based on a multi-layer online ensemble framework incorporating novel ingredients, including a carefully designed optimism for unifying diverse function types and cascaded corrections for algorithmic stability. Notably, despite its multi-layer structure, our algorithm necessitates only one gradient query per round, making it favorable when the gradient evaluation is time-consuming. This is facilitated by a novel regret decomposition equipped with carefully designed surrogate losses.
Shiyu Hu, Dailing Zhang, Meiqi Wu, Xiaokun Feng, Xuchen Li, Xin Zhao, Kaiqi Huang
Tracking an arbitrary moving target in a video sequence is the foundation for high-level tasks like video understanding. Although existing visual-based trackers have demonstrated good tracking capabilities in short video sequences, they always perform poorly in complex environments, as represented by the recently proposed global instance tracking task, which consists of longer videos with more complicated narrative content. Recently, several works have introduced natural language into object tracking, desiring to address the limitations of relying only on a single visual modality. However, these selected videos are still short sequences with uncomplicated spatio-temporal and causal relationships, and the provided semantic descriptions are too simple to characterize video content. To address these issues, we (1) first propose a new multi-modal global instance tracking benchmark named MGIT. It consists of 150 long video sequences with a total of 2.03 million frames, aiming to fully represent the complex spatio-temporal and causal relationships coupled in longer narrative content. (2) Each video sequence is annotated with three semantic grains (i.e., action, activity, and story) to model the progressive process of human cognition. We expect this multi-granular annotation strategy can provide a favorable environment for multi-modal object tracking research and long video understanding. (3) Besides, we execute comparative experiments on existing multi-modal object tracking benchmarks, which not only explore the impact of different annotation methods, but also validate that our annotation method is a feasible solution for coupling human understanding into semantic labels. (4) Additionally, we conduct detailed experimental analyses on MGIT, and hope the explored performance bottlenecks of existing algorithms can support further research in multi-modal object tracking. The proposed benchmark, experimental results, and toolkit will be released gradually on http://videocube.aitestunion.com/.
Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, Zhaoran Wang
tl;dr: We design a both provable sample-efficient and easy-to-implement RL framework for exploration.
In reinforcement learning (RL), balancing exploration and exploitation is crucial for achieving an optimal policy in a sample-efficient way. To this end, existing sample- efficient algorithms typically consist of three components: estimation, planning, and exploration. However, to cope with general function approximators, most of them involve impractical algorithmic components to incentivize exploration, such as data-dependent level-set constraints or complicated sampling procedures. To address this challenge, we propose an easy-to-implement RL framework called Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single objective that integrates the estimation and planning components while balancing exploration and exploitation automatically. Theoretically, we prove that the MEX achieves a sublinear regret with general function approximators and is extendable to the zero-sum Markov game setting. Meanwhile, we adapt deep RL baselines to design practical versions of MEX in both the model-based and model-free settings, which outperform baselines in various MuJoCo environments with sparse reward by a stable margin. Compared with existing sample-efficient algorithms with general function approximators, MEX achieves similar sample efficiency while also enjoying a lower computational cost and is more compatible with modern deep RL methods.
Paul Steven Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Cohen Ethan, Aidan James Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, Tanishq Mathew Abraham
tl;dr: We present MindEye, a novel state-of-the-art fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity using contrastive learning and diffusion models.
We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye's performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.
Michael A. Lepori, Thomas Serre, Ellie Pavlick
Though modern neural networks have achieved impressive performance in both vision and language tasks, we know little about the functions that they implement. One possibility is that neural networks implicitly break down complex tasks into subroutines, implement modular solutions to these subroutines, and compose them into an overall solution to a task --- a property we term structural compositionality. Another possibility is that they may simply learn to match new inputs to learned templates, eliding task decomposition entirely. Here, we leverage model pruning techniques to investigate this question in both vision and language across a variety of architectures, tasks, and pretraining regimens. Our results demonstrate that models oftentimes implement solutions to subroutines via modular subnetworks, which can be ablated while maintaining the functionality of other subnetworks. This suggests that neural networks may be able to learn compositionality, obviating the need for specialized symbolic mechanisms.
James Cook, Milind Shyani, Nina Mishra
tl;dr: A non-interactive protocol to share a dataset in a differentially private way that nonetheless allows joins with other datasets on sensitive identifiers
How can one publish a dataset with sensitive attributes in a way that both preserves privacy and enables joins with other datasets on those same sensitive attributes? This problem arises in many contexts, e.g., a hospital and an airline may want to jointly determine whether people who take long-haul flights are more likely to catch respiratory infections. If they join their data by a common keyed user identifier such as email address, they can determine the answer, though it breaks privacy. This paper shows how the hospital can generate a private sketch and how the airline can privately join with the hospital's sketch by email address. The proposed solution satisfies pure differential privacy and gives approximate answers to linear queries and optimization problems over those joins. Whereas prior work such as secure function evaluation requires sender/receiver interaction, a distinguishing characteristic of the proposed approach is that it is non-interactive. Consequently, the sketch can be published to a repository for any organization to join with, facilitating data discovery. The accuracy of the method is demonstrated through both theoretical analysis and extensive empirical evidence.
Ke Yi, Yansen Wang, Kan Ren, Dongsheng Li
Large-scale pre-training has shown great potential to enhance models on downstream tasks in vision and language. Developing similar techniques for scalp electroencephalogram (EEG) is suitable since unlabelled data is plentiful. Meanwhile, various sampling channel selections and inherent structural and spatial information bring challenges and avenues to improve existing pre-training strategies further. In order to break boundaries between different EEG resources and facilitate cross-dataset EEG pre-training, we propose to map all kinds of channel selections to a unified topology. We further introduce MMM, a pre-training framework with Multi-dimensional position encoding, Multi-level channel hierarchy, and Multi-stage pre-training strategy built on the unified topology to obtain topology-agnostic representations. Experiments demonstrate that our approach yields impressive improvements over previous state-of-the-art techniques on emotional recognition benchmark datasets.
Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, Chao Zhang
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks, but they still suffer from challenges such as hallucination and weak numerical reasoning. To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities. However, current evaluation methods do not distinguish between questions that can be answered using LLMs' internal knowledge and those that require external information through tool use. To address this issue, we introduce a new dataset called ToolQA, which is designed to faithfully evaluate LLMs' ability to use external tools for question answering. Our development of ToolQA involved a scalable, automated process for dataset curation, along with 13 specialized tools designed for interaction with external knowledge in order to answer questions. Importantly, we strive to minimize the overlap between our benchmark data and LLMs' pre-training data, enabling a more precise evaluation of LLMs' tool-use reasoning abilities. We conducted an in-depth diagnosis of existing tool-use LLMs to highlight their strengths, weaknesses, and potential improvements. Our findings set a new benchmark for evaluating LLMs and suggest new directions for future advancements. Our data and code are freely available for the broader scientific community on GitHub.
Sungbin Lim, Eunbi Yoon, Taehyun Byun, Taewon Kang, Seungwoo Kim, Kyungjae Lee, Sungjoon Choi
tl;dr: We propose a unified framework for score-based generative modeling in Hilbert spaces using stochastic evolution equations with time-dependent operators.
Continuous-time score-based generative models consist of a pair of stochastic differential equations (SDEs)—a forward SDE that smoothly transitions data into a noise space and a reverse SDE that incrementally eliminates noise from a Gaussian prior distribution to generate data distribution samples—are intrinsically connected by the time-reversal theory on diffusion processes. In this paper, we investigate the use of stochastic evolution equations in Hilbert spaces, which expand the applicability of SDEs in two aspects: sample space and evolution operator, so they enable encompassing recent variations of diffusion models, such as generating functional data or replacing drift coefficients with image transformation. To this end, we derive a generalized time-reversal formula to build a bridge between probabilistic diffusion models and stochastic evolution equations and propose a score-based generative model called Hilbert Diffusion Model (HDM). Combining with Fourier neural operator, we verify the superiority of HDM for sampling functions from functional datasets with a power of kernel two-sample test of 4.2 on Quadratic, 0.2 on Melbourne, and 3.6 on Gridwatch, which outperforms existing diffusion models formulated in function spaces. Furthermore, the proposed method shows its strength in motion synthesis tasks by utilizing the Wiener process with values in Hilbert space. Finally, our empirical results on image datasets also validate a connection between HDM and diffusion models using heat dissipation, revealing the potential for exploring evolution operators and sample spaces.
Xinyi Wu, Amir Ajorlou, Zihui Wu, Ali Jadbabaie
tl;dr: We rigorously establish that oversmoothing happens exponentially as model depth increases for attention-based graph neural networks.
Oversmoothing in Graph Neural Networks (GNNs) refers to the phenomenon where increasing network depth leads to homogeneous node representations. While previous work has established that Graph Convolutional Networks (GCNs) exponentially lose expressive power, it remains controversial whether the graph attention mechanism can mitigate oversmoothing. In this work, we provide a definitive answer to this question through a rigorous mathematical analysis, by viewing attention-based GNNs as nonlinear time-varying dynamical systems and incorporating tools and techniques from the theory of products of inhomogeneous matrices and the joint spectral radius. We establish that, contrary to popular belief, the graph attention mechanism cannot prevent oversmoothing and loses expressive power exponentially. The proposed framework extends the existing results on oversmoothing for symmetric GCNs to a significantly broader class of GNN models, including random walk GCNs, Graph Attention Networks (GATs) and (graph) transformers. In particular, our analysis accounts for asymmetric, state-dependent and time-varying aggregation operators and a wide range of common nonlinear activation functions, such as ReLU, LeakyReLU, GELU and SiLU.
Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse prior to the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) when using our proposed sparsity-aware unlearning method. Furthermore, we showcase the practical impact of our proposed MU methods through two specific use cases: defending against backdoor attacks, and enhancing transfer learning through source class removal. These applications demonstrate the versatility and effectiveness of our approaches in addressing a variety of machine learning challenges beyond unlearning for data privacy. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse.
Xin Shen, Shaozu Yuan, Hongwei Sheng, Heming Du, Xin Yu
tl;dr: We introduce an extensive Australian Sign Language (Auslan) dataset for advancing various sign language-related tasks.
Sign language translation (SLT) aims to convert a continuous sign language video clip into a spoken language. Considering different geographic regions generally have their own native sign languages, it is valuable to establish corresponding SLT datasets to support related communication and research. Auslan, as a sign language specific to Australia, still lacks a dedicated large-scale dataset for SLT. To fill this gap, we curate an Australian Sign Language translation dataset, dubbed Auslan-Daily, which is collected from the Auslan educational TV series and Auslan TV programs. The former involves daily communications among multiple signers in the wild, while the latter comprises sign language videos for up-to-date news, weather forecasts, and documentaries. In particular, Auslan-Daily has two main features: (1) the topics are diverse and signed by multiple signers, and (2) the scenes in our dataset are more complex, e.g., captured in various environments, gesture interference during multi-signers' interactions and various camera positions. With a collection of more than 45 hours of high-quality Auslan video materials, we invite Auslan experts to align different fine-grained visual and language pairs, including video $\leftrightarrow$ fingerspelling, video $\leftrightarrow$ gloss, and video $\leftrightarrow$ sentence. As a result, Auslan-Daily contains multi-grained annotations that can be utilized to accomplish various fundamental sign language tasks, such as signer detection, sign spotting, fingerspelling detection, isolated sign language recognition, sign language translation and alignment. Moreover, we benchmark results with state-of-the-art models for each task in Auslan-Daily. Experiments indicate that Auslan-Daily is a highly challenging SLT dataset, and we hope this dataset will contribute to the development of Auslan and the advancement of sign languages worldwide in a broader context. All datasets and benchmarks are available at Auslan-Daily.
Wenxuan Zhang, Mahani Aljunied, Chang Gao, Yew Ken Chia, Lidong Bing
tl;dr: We introduce M3Exam, a new benchmark sourced from human exam questions, for evaluating LLMs in a multilingual, multimodal, and multilevel context.
Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at \url{https://github.com/DAMO-NLP-SG/M3Exam}.
Jonggyu Jang, Sangwoo Oh, Youjin Kim, Dongmin Seo, Youngchol Choi, Hyun Jong Yang
tl;dr: We propose a new multi-modal dataset of aerial RGB and HSI sensor data for maritime object detection.
Object detection in aerial images is a growing area of research, with maritime object detection being a particularly important task for reliable surveillance, monitoring, and active rescuing. Notwithstanding astonishing advances of computer vision technologies, detecting ships and floating matters in these images are challenging due to factors such as object distance. What makes it worse is pervasive sea surface effects such as sunlight reflection, wind, and waves. Hyperspectral image (HSI) sensors, providing more than 100 channels in wavelengths of visible and near-infrared, can extract intrinsic information of materials from a few pixels of HSIs. The advent of HSI sensors motivates us to leverage HSIs to circumvent false positives due to the sea surface effects. Unfortunately, there are few public HSI datasets due to the high cost and labor involved in collecting them, hindering object detection research based on HSIs. We have collected and annotated a new dataset called ``Multi-Modal Ship and flOating matter Detection in Aerial Images (M$^{2}$SODAI),'', which includes synchronized image pairs of RGB and HSI data, along with bounding box labels for nearly 6,000 instances per category. We also propose a new multi-modal extension of the feature pyramid network called DoubleFPN. Extensive experiments on our benchmark demonstrate that fusion of RGB and HSI data can enhance mAP, especially in the presence of the sea surface effects.
Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun, Chulhee Yun
tl;dr: We introduce PLASTIC, a simple-to-use algorithm which address the loss of plasticity phenomenon and enhance sample efficiency in Reinforcement Learning.
In Reinforcement Learning (RL), enhancing sample efficiency is crucial, particularly in scenarios when data acquisition is costly and risky. In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction. However, these multiple updates often lead the model to overfit to earlier interactions, which is referred to as the loss of plasticity. Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects. Input plasticity, which denotes the model's adaptability to changing input data, and label plasticity, which denotes the model's adaptability to evolving input-output relationships. Synthetic experiments on the CIFAR-10 dataset reveal that finding smoother minima of loss landscape enhances input plasticity, whereas refined gradient propagation improves label plasticity. Leveraging these findings, we introduce the **PLASTIC** algorithm, which harmoniously combines techniques to address both concerns. With minimal architectural modifications, PLASTIC achieves competitive performance on benchmarks including Atari-100k and Deepmind Control Suite. This result emphasizes the importance of preserving the model's plasticity to elevate the sample efficiency in RL. The code is available at https://github.com/dojeon-ai/plastic.
Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, Qingming Huang
Real-world datasets are typically imbalanced in the sense that only a few classes have numerous samples, while many classes are associated with only a few samples. As a result, a naive ERM learning process will be biased towards the majority classes, making it difficult to generalize to the minority classes. To address this issue, one simple but effective approach is to modify the loss function to emphasize the learning on minority classes, such as re-weighting the losses or adjusting the logits via class-dependent terms. However, existing generalization analysis of such losses is still coarse-grained and fragmented, failing to explain some empirical results. To bridge this gap between theory and practice, we propose a novel technique named data-dependent contraction to capture how these modified losses handle different classes. On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment in a unified manner. Furthermore, a principled learning algorithm is developed based on the theoretical insights. Finally, the empirical results on benchmark datasets not only validate the theoretical results but also demonstrate the effectiveness of the proposed method.
Xiang Gu, Liwei Yang, Jian Sun, Zongben Xu
tl;dr: This paper designed a novel optimal transport-guided conditional score-based diffusion model, trained in unpaired and partially paired settings. We presented theoretical analysis and extensive experiments on this model.
Conditional score-based diffusion model (SBDM) is for conditional generation of target data with paired data as condition, and has achieved great success in image translation. However, it requires the paired data as condition, and there would be insufficient paired data provided in real-world applications. To tackle the applications with partially paired or even unpaired dataset, we propose a novel Optimal Transport-guided Conditional Score-based diffusion model (OTCS) in this paper. We build the coupling relationship for the unpaired or partially paired dataset based on $L_2$-regularized unsupervised or semi-supervised optimal transport, respectively. Based on the coupling relationship, we develop the objective for training the conditional score-based model for unpaired or partially paired settings, which is based on a reformulation and generalization of the conditional SBDM for paired setting. With the estimated coupling relationship, we effectively train the conditional score-based model by designing a ``resampling-by-compatibility'' strategy to choose the sampled data with high compatibility as guidance. Extensive experiments on unpaired super-resolution and semi-paired image-to-image translation demonstrated the effectiveness of the proposed OTCS model. From the viewpoint of optimal transport, OTCS provides an approach to transport data across distributions, which is a challenge for OT on large-scale datasets. We theoretically prove that OTCS realizes the data transport in OT with a theoretical bound.
Oren Mangoubi, Nisheeth K Vishnoi
Given a Lipschitz or smooth convex function $f:K \to \mathbb{R}^d$ for a bounded polytope $K:=${ $\theta \in \mathbb{R}^d: A\theta \leq b$}, where $A\in \mathbb{R}^{m\times d}$ and $b \in \mathbb{R}^m$, we consider the problem of sampling from the log-concave distribution $\pi(\theta) \propto e^{-f(\theta)}$ constrained to $K$. Interest in this problem derives from its applications to Bayesian inference and differential privacy. We present a generalization of the Dikin walk to this setting that requires at most $O((md + d L^2 R^2) \times md^{\omega-1} \log(\frac{w}{\delta}))$ arithmetic operations to sample from $\pi$ within error $\delta>0$ in the total variation distance from a $w$-warm start. Here $L$ is the Lipschitz constant of $f$, $K$ is contained in a ball of radius $R$ and contains a ball of smaller radius $r$, and $\omega \approx 2.37$ is the matrix-multiplication constant. This improves on the running time of prior works for a range of structured settings important for the aforementioned inference and privacy applications. Technically, we depart from previous Dikin walks by adding a soft-threshold regularizer derived from the Lipschitz or smoothness properties of $f$ to a barrier function for $K$ that allows our version of the Dikin walk to propose updates that have a high Metropolis acceptance ratio for $f$, while at the same time remaining inside the polytope $K$.
Taiji Suzuki, Denny Wu, Atsushi Nitanda
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift, and it naturally arises from the optimization of two-layer neural networks via (noisy) gradient descent. Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures. However, all prior analyses assumed the infinite-particle or continuous-time limit, and cannot handle stochastic gradient updates. We provide a general framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and stochastic gradient. To demonstrate the wide applicability of our framework, we establish quantitative convergence rate guarantees to the regularized global optimal solution for $(i)$ a wide range of learning problems such as mean-field neural network and MMD minimization, and $(ii)$ different gradient estimators including SGD and SVRG. Despite the generality of our results, we achieve an improved convergence rate in both the SGD and SVRG settings when specialized to the standard Langevin dynamics.
Abhineet Agarwal, Anish Agarwal, Suhas Vijaykumar
tl;dr: A causal inference framework for learning unit-specific counterfactuals for combinations of interventions.
We consider a setting where there are $N$ heterogeneous units and $p$ interventions. Our goal is to learn unit-specific potential outcomes for any combination of these $p$ interventions, i.e., $N \times 2^p$ causal parameters. Choosing a combination of interventions is a problem that naturally arises in a variety of applications such as factorial design experiments and recommendation engines (e.g., showing a set of movies that maximizes engagement for a given user). Running $N \times 2^p$ experiments to estimate the various parameters is likely expensive and/or infeasible as $N$ and $p$ grow. Further, with observational data there is likely confounding, i.e., whether or not a unit is seen under a combination is correlated with its potential outcome under that combination. We study this problem under a novel model that imposes latent structure across both units and combinations of interventions. Specifically, we assume latent similarity in potential outcomes across units (i.e., the matrix of potential outcomes is approximately rank $r$) and regularity in how combinations of interventions interact (i.e., the coefficients in the Fourier expansion of the potential outcomes is approximately $s$ sparse). We establish identification for all $N \times 2^p$ parameters despite unobserved confounding. We propose an estimation procedure, Synthetic Combinations, and establish finite-sample consistency under precise conditions on the observation pattern. We show that Synthetic Combinations is able to consistently estimate unit-specific potential outcomes given a total of $\text{poly}(r) \times \left( N + s^2p\right)$ observations. In comparison, previous methods that do not exploit structure across both units and combinations have poorer sample complexity scaling as $\min(N \times s^2p, \ \ r \times (N + 2^p))$.
Ioannis Panageas, Nikolas Patris, Stratis Skoulakis, Volkan Cevher
Fictitious Play (FP) is a simple and natural dynamic for repeated play with many applications in game theory and multi-agent reinforcement learning. It was introduced by Brown and its convergence properties for two-player zero-sum games was established later by Robinson. Potential games [Monderer and Shapley 1996] is another class of games which exhibit the FP property [Monderer and Shapley 1996], i.e., FP dynamics converges to a Nash equilibrium if all agents follows it. Nevertheless, except for two-player zero-sum games and for specific instances of payoff matrices [Abernethy et. al. 2021] or for adversarial tie-breaking rules [Daskalakis and Pan, 2014], the \textit{convergence rate} of FP is unknown. In this work, we focus on the rate of convergence of FP when applied to potential games and more specifically identical payoff games. We prove that FP can take exponential time (in the number of strategies) to reach a Nash equilibrium, even if the game is restricted to \textit{two agents}. To prove this, we recursively construct a two-player coordination game with a unique Nash equilibrium. Moreover, every approximate Nash equilibrium in the constructed game must be close to the pure Nash equilibrium in $\ell_1$-distance.
Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, Nick Haber
tl;dr: Language models can solve algorithmic reasoning tasks by decomposing them, solving subparts, and composing them.
Despite recent success in large language model (LLM) reasoning, LLMs struggle with hierarchical multi-step reasoning tasks like generating complex programs. For these tasks, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs. With Parsel, we automatically decompose algorithmic tasks into hierarchical natural language function descriptions and then search over combinations of possible function implementations using tests. We show that Parsel can be used across domains requiring hierarchical reasoning, including program synthesis and robotic planning. We find that, using Parsel, LLMs solve more competition-level problems in the APPS dataset, resulting in pass rates over 75\% higher than prior results from directly sampling AlphaCode and Codex, while often using a smaller sample budget. Moreover, with automatically generated tests, we find that Parsel can improve the state-of-the-art pass@1 performance on HumanEval from 67\% to 85\%. We also find that LLM-generated robotic plans using Parsel are more than twice as likely to be considered accurate than directly generated plans. Lastly, we explore how Parsel addresses LLM limitations and discuss how Parsel may be useful for human programmers. We release our code at https://github.com/ezelikman/parsel.
Suraj Srinivas, Sebastian Bordt, Himabindu Lakkaraju
One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause robust models to have rudimentary generative capabilities, including image generation, denoising, and in-painting. However, the underlying mechanisms behind these phenomena remain unknown. In this work, we provide a first explanation of PAGs via \emph{off-manifold robustness}, which states that models must be more robust off- the data manifold than they are on-manifold. We first demonstrate theoretically that off-manifold robustness leads input gradients to lie approximately on the data manifold, explaining their perceptual alignment. We then show that Bayes optimal models satisfy off-manifold robustness, and confirm the same empirically for robust models trained via gradient norm regularization, randomized smoothing, and adversarial training with projected gradient descent. Quantifying the perceptual alignment of model gradients via their similarity with the gradients of generative models, we show that off-manifold robustness correlates well with perceptual alignment. Finally, based on the levels of on- and off-manifold robustness, we identify three different regimes of robustness that affect both perceptual alignment and model accuracy: weak robustness, bayes-aligned robustness, and excessive robustness. Code is available at https://github.com/tml-tuebingen/pags.
Anders Aamand, Justin Y. Chen, Huy Nguyen, Sandeep Silwal, Ali Vakilian
tl;dr: We give improved learning-augmented algorithms for frequency estimation.
Estimating frequencies of elements appearing in a data stream is a key task in large-scale data analysis. Popular sketching approaches to this problem (e.g., CountMin and CountSketch) come with worst-case guarantees that probabilistically bound the error of the estimated frequencies for any possible input. The work of Hsu et al.~(2019) introduced the idea of using machine learning to tailor sketching algorithms to the specific data distribution they are being run on. In particular, their learning-augmented frequency estimation algorithm uses a learned heavy-hitter oracle which predicts which elements will appear many times in the stream. We give a novel algorithm, which in some parameter regimes, already theoretically outperforms the learning based algorithm of Hsu et al. *without* the use of any predictions. Augmenting our algorithm with heavy-hitter predictions further reduces the error and improves upon the state of the art. Empirically, our algorithms achieve superior performance in all experiments compared to prior approaches.
David Lindner, Janos Kramar, Sebastian Farquhar, Matthew Rahtz, Thomas McGrath, Vladimir Mikulik
tl;dr: Compiling human-readable programs into weights of a transformer model to accelerate interpretability research.
We show how to "compile" human-readable programs into standard decoder-only transformer models. Our compiler, Tracr, generates models with known structure. This structure can be used to design experiments. For example, we use it to study "superposition" in transformers that execute multi-step algorithms. Additionally, the known structure of Tracr-compiled models can serve as _ground-truth_ for evaluating interpretability methods. Commonly, because the "programs" learned by transformers are unknown it is unclear whether an interpretation succeeded. We demonstrate our approach by implementing and examining programs including computing token frequencies, sorting, and parenthesis checking. We provide an open-source implementation of Tracr at https://github.com/google-deepmind/tracr.
Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli, Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, Julien Launay
tl;dr: Adequately filtered and deduplicated web data alone can train models outperforming others trained on curated corpora such as The Pile
Large language models are commonly trained on a mixture of filtered web data and curated ``high-quality'' corpora, such as social media conversations, books, or technical papers. This curation process is believed to be necessary to produce performant models with broad zero-shot generalization abilities. However, as larger models requiring pretraining on trillions of tokens are considered, it is unclear how scalable is curation, and whether we will run out of unique high-quality data soon. At variance with previous beliefs, we show that properly filtered and deduplicated web data alone can lead to powerful models; even significantly outperforming models trained on The Pile. Despite extensive filtering, the high-quality data we extract from the web is still plentiful, and we are able to obtain five trillion tokens from CommonCrawl. We publicly release an extract of 500 billion tokens from our RefinedWeb dataset, and 1.3/7.5B parameters language models trained on it.
François Rozet, Gilles Louppe
Data assimilation, in its most comprehensive form, addresses the Bayesian inverse problem of identifying plausible state trajectories that explain noisy or incomplete observations of stochastic dynamical systems. Various approaches have been proposed to solve this problem, including particle-based and variational methods. However, most algorithms depend on the transition dynamics for inference, which becomes intractable for long time horizons or for high-dimensional systems with complex dynamics, such as oceans or atmospheres. In this work, we introduce score-based data assimilation for trajectory inference. We learn a score-based generative model of state trajectories based on the key insight that the score of an arbitrarily long trajectory can be decomposed into a series of scores over short segments. After training, inference is carried out using the score model, in a non-autoregressive manner by generating all states simultaneously. Quite distinctively, we decouple the observation model from the training procedure and use it only at inference to guide the generative process, which enables a wide range of zero-shot observation scenarios. We present theoretical and empirical evidence supporting the effectiveness of our method.
Qiang Zhou, Weize Li, Lihan Jiang, Guoliang Wang, Guyue Zhou, Shanghang Zhang, Hao Zhao
tl;dr: A Dataset and Benchmark for Pose-agnostic Anomaly Detection
Object anomaly detection is an important problem in the field of machine vision and has seen remarkable progress recently. However, two significant challenges hinder its research and application. First, existing datasets lack comprehensive visual information from various pose angles. They usually have an unrealistic assumption that the anomaly-free training dataset is pose-aligned, and the testing samples have the same pose as the training data. However, in practice, anomaly may exist in any regions on a object, the training and query samples may have different poses, calling for the study on pose-agnostic anomaly detection. Second, the absence of a consensus on experimental protocols for pose-agnostic anomaly detection leads to unfair comparisons of different methods, hindering the research on pose-agnostic anomaly detection. To address these issues, we develop Multi-pose Anomaly Detection (MAD) dataset and Pose-agnostic Anomaly Detection (PAD) benchmark, which takes the first step to address the pose-agnostic anomaly detection problem. Specifically, we build MAD using 20 complex-shaped LEGO toys including 4K views with various poses, and high-quality and diverse 3D anomalies in both simulated and real environments. Additionally, we propose a novel method OmniposeAD, trained using MAD, specifically designed for pose-agnostic anomaly detection. Through comprehensive evaluations, we demonstrate the relevance of our dataset and method. Furthermore, we provide an open-source benchmark library, including dataset and baseline methods that cover 8 anomaly detection paradigms, to facilitate future research and application in this domain. Code, data, and models are publicly available at https://github.com/EricLee0224/PAD.
Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, Kundan Kumar
tl;dr: A method for neural audio compression that outperforms competing approaches in terms of audio quality, at much higher compression rates.
Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.
Manjie Xu, Guangyuan Jiang, Wei Liang, Chi Zhang, Yixin Zhu
tl;dr: We introduce the IVRE environment, simulating complex uncertainty scenarios to assess artificial agents' interactive reasoning skills, suggesting a need for advanced research towards achieving human-like intelligence in uncertainty resolution.
One of the fundamental cognitive abilities of humans is to quickly resolve uncertainty by generating hypotheses and testing them via active trials. Encountering a novel phenomenon accompanied by ambiguous cause-effect relationships, humans make hypotheses against data, conduct inferences from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. These iterative processes persist until the underlying mechanism becomes clear. In this work, we devise the **IVRE** (pronounced as *"ivory"*) environment for evaluating artificial agents' reasoning ability under uncertainty. **IVRE** is an interactive environment featuring rich scenarios centered around *Blicket* detection. Agents in **IVRE** are placed into environments with various ambiguous action-effect pairs and asked to determine each object's role. They are encouraged to propose effective and efficient experiments to validate their hypotheses based on observations and actively gather new information. The game ends when all uncertainties are resolved or the maximum number of trials is consumed. By evaluating modern artificial agents in **IVRE**, we notice a clear failure of today's learning methods compared to humans. Such inefficacy in interactive reasoning ability under uncertainty calls for future research in building human-like intelligence.
Roland S. Zimmermann, Thomas Klein, Wieland Brendel
tl;dr: We compare the mechanistic interpretability of vision models differing scale, architecture, training paradigm and dataset size and find that none of these design choices have any significant effect on the interpretability of individual units.
In light of the recent widespread adoption of AI systems, understanding the internal information processing of neural networks has become increasingly critical. Most recently, machine vision has seen remarkable progress by scaling neural networks to unprecedented levels in dataset and model size. We here ask whether this extraordinary increase in scale also positively impacts the field of mechanistic interpretability. In other words, has our understanding of the inner workings of scaled neural networks improved as well? We use a psychophysical paradigm to quantify one form of mechanistic interpretability for a diverse suite of nine models and find no scaling effect for interpretability - neither for model nor dataset size. Specifically, none of the investigated state-of-the-art models are easier to interpret than the GoogLeNet model from almost a decade ago. Latest-generation vision models appear even less interpretable than older architectures, hinting at a regression rather than improvement, with modern models sacrificing interpretability for accuracy. These results highlight the need for models explicitly designed to be mechanistically interpretable and the need for more helpful interpretability methods to increase our understanding of networks at an atomic level. We release a dataset containing more than 130'000 human responses from our psychophysical evaluation of 767 units across nine models. This dataset facilitates research on automated instead of human-based interpretability evaluations, which can ultimately be leveraged to directly optimize the mechanistic interpretability of models.
David Simchi-Levi, Zeyu Zheng, Feng Zhu
We consider the stochastic multi-armed bandit problem and fully characterize the interplays among three desired properties for policy design: worst-case optimality, instance-dependent consistency, and light-tailed risk. We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario. A novel policy is proposed to achieve the optimal regret tail risk for any regret threshold. Concretely, for any given $\alpha\in[1/2, 1)$ and $\beta\in[0, 1)$, our policy achieves a worst-case expected regret of $\tilde O(T^\alpha)$ and instance-dependent expected regret of $\tilde O(T^\beta)$, while enjoys a probability of incurring an $\Omega(T^\delta)$ regret that decays exponentially with a polynomial $T$ term. Such decaying rate is proved to be best achievable. We also generalize our analysis to the stochastic multi-armed bandit problem with non-stationary baseline rewards, where in each time period $t$, the decision maker pulls one of $K$ arms and collects a reward which is the sum of three terms: the mean of the pulled arm, an independent noise, and a non-stationary baseline reward as a function of $t$. Our results reveal insights on the trade-off between expected regret and tail risk for both worst-case and instance-dependent scenario, indicating that more sub-optimality and inconsistency leaves space for more light-tailed risk of incurring a large regret.
Ruozi Huang, Xipeng Wu, Hongsheng Yu, Zhong Fan, Haobo Fu, QIANG FU, Yang Wei
tl;dr: A league training method with goal-conditioned exploiters and opponent modeling that aims to improve the robustness of StarCarft II AI.
It is extremely difficult to train a superhuman Artificial Intelligence (AI) for games of similar size to StarCraft II. AlphaStar is the first AI that beat human professionals in the full game of StarCraft II, using a league training framework that is inspired by a game-theoretic approach. In this paper, we improve AlphaStar's league training in two significant aspects. We train goal-conditioned exploiters, whose abilities of spotting weaknesses in the main agent and the entire league are greatly improved compared to the unconditioned exploiters in AlphaStar. In addition, we endow the agents in the league with the new ability of opponent modeling, which makes the agent more responsive to the opponent's real-time strategy. Based on these improvements, we train a better and superhuman AI with orders of magnitude less resources than AlphaStar (see Table 1 for a full comparison). Considering the iconic role of StarCraft II in game AI research, we believe our method and results on StarCraft II provide valuable design principles on how one would utilize the general league training framework for obtaining a least-exploitable strategy in various, large-scale, real-world games.
Suhas Kotha, Christopher Brix, J Zico Kolter, Krishnamurthy Dj Dvijotham, Huan Zhang
tl;dr: We present an efficient algorithm to over-approximate the preimage of a neural network.
Most work on the formal verification of neural networks has focused on bounding the set of outputs that correspond to a given set of inputs (for example, bounded perturbations of a nominal input). However, many use cases of neural network verification require solving the inverse problem, or over-approximating the set of inputs that lead to certain outputs. We present the INVPROP algorithm for verifying properties over the preimage of a linearly constrained output set, which can be combined with branch-and-bound to increase precision. Contrary to other approaches, our efficient algorithm is GPU-accelerated and does not require a linear programming solver. We demonstrate our algorithm for identifying safe control regions for a dynamical system via backward reachability analysis, verifying adversarial robustness, and detecting out-of-distribution inputs to a neural network. Our results show that in certain settings, we find over-approximations over $2500\times$ tighter than prior work while being $2.5\times$ faster. By strengthening robustness verification with output constraints, we consistently verify more properties than the previous state-of-the-art on multiple benchmarks, including a large model with 167k neurons in VNN-COMP 2023. Our algorithm has been incorporated into the $\alpha,\beta$-CROWN verifier, available at https://abcrown.org.
Chongyu Qu, Tiezheng Zhang, Hualin Qiao, Jie Liu, Yucheng Tang, Alan Yuille, Zongwei Zhou
tl;dr: We introduce AbdomenAtlas-8K, a substantial multi-organ dataset with the spleen, liver, kidneys, stomach, gallbladder, pancreas, aorta, and IVC annotated in 8,448 CT volumes, totaling 3.2 million CT slices.
Annotating medical images, particularly for organ segmentation, is laborious and time-consuming. For example, annotating an abdominal organ requires an estimated rate of 30-60 minutes per CT volume based on the expertise of an annotator and the size, visibility, and complexity of the organ. Therefore, publicly available datasets for multi-organ segmentation are often limited in data size and organ diversity. This paper proposes an active learning procedure to expedite the annotation process for organ segmentation and creates the largest multi-organ dataset (by far) with the spleen, liver, kidneys, stomach, gallbladder, pancreas, aorta, and IVC annotated in 8,448 CT volumes, equating to 3.2 million slices. The conventional annotation methods would take an experienced annotator up to 1,600 weeks (or roughly 30.8 years) to complete this task. In contrast, our annotation procedure has accomplished this task in three weeks (based on an 8-hour workday, five days a week) while maintaining a similar or even better annotation quality. This achievement is attributed to three unique properties of our method: (1) label bias reduction using multiple pre-trained segmentation models, (2) effective error detection in the model predictions, and (3) attention guidance for annotators to make corrections on the most salient errors. Furthermore, we summarize the taxonomy of common errors made by AI algorithms and annotators. This allows for continuous improvement of AI and annotations, significantly reducing the annotation costs required to create large-scale datasets for a wider variety of medical imaging tasks. Code and dataset are available at https://github.com/MrGiovanni/AbdomenAtlas
Zhongjie Yu, Martin Trapp, Kristian Kersting
tl;dr: Characteristic circuit is a deep probabilistic model over characteristic functions that enables a unified view for discrete and continuous random variables and allows to learn distributions that do not have closed form expressions for their density.
In many real-world scenarios it is crucial to be able to reliably and efficiently reason under uncertainty while capturing complex relationships in data. Probabilistic circuits (PCs), a prominent family of tractable probabilistic models, offer a remedy to this challenge by composing simple, tractable distributions into a high-dimensional probability distribution. However, learning PCs on heterogeneous data is challenging and densities of some parametric distributions are not available in closed form, limiting their potential use. We introduce characteristic circuits (CCs), a family of tractable probabilistic models providing a unified formalization of distributions over heterogeneous data in the spectral domain. The one-to-one relationship between characteristic functions and probability measures enables us to learn high-dimensional distributions on heterogeneous data domains and facilitates efficient probabilistic inference even when no closed-form density function is available. We show that the structure and parameters of CCs can be learned efficiently from the data and find that CCs outperform state-of-the-art density estimators for heterogeneous data domains on common benchmark data sets.
Samuel Dooley, Rhea Sanjay Sukthanker, John P Dickerson, Colin White, Frank Hutter, Micah Goldblum
tl;dr: We find that bias is inherent to neural network architectures and hyperparameters, yet we can mitigate it by searching for fair ones
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
Siyuan Guo, Viktor Tóth, Bernhard Schölkopf, Ferenc Huszár
Constraint-based causal discovery methods leverage conditional independence tests to infer causal relationships in a wide variety of applications. Just as the majority of machine learning methods, existing work focuses on studying $\textit{independent and identically distributed}$ data. However, it is known that even with infinite $i.i.d.\$ data, constraint-based methods can only identify causal structures up to broad Markov equivalence classes, posing a fundamental limitation for causal discovery. In this work, we observe that exchangeable data contains richer conditional independence structure than $i.i.d.\$ data, and show how the richer structure can be leveraged for causal discovery. We first present causal de Finetti theorems, which state that exchangeable distributions with certain non-trivial conditional independences can always be represented as $\textit{independent causal mechanism (ICM)}$ generative processes. We then present our main identifiability theorem, which shows that given data from an ICM generative process, its unique causal structure can be identified through performing conditional independence tests. We finally develop a causal discovery algorithm and demonstrate its applicability to inferring causal relationships from multi-environment data.
Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom
tl;dr: We introduce Toolformer, a language model trained in a self-supervised way to know when and how to use external tools, achieving substantially improved zero-shot performance across a variety of downstream tasks.
Language models (LMs) exhibit remarkable abilities to solve new tasks from just a few examples or textual instructions, especially at scale. They also, paradoxically, struggle with basic functionality, such as arithmetic or factual lookup, where much simpler and smaller specialized models excel. In this paper, we show that LMs can teach themselves to *use external tools* via simple APIs and achieve the best of both worlds. We introduce *Toolformer*, a model trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction. This is done in a self-supervised way, requiring nothing more than a handful of demonstrations for each API. We incorporate a range of tools, including a calculator, a Q&A system, a search engine, a translation system, and a calendar. Toolformer achieves substantially improved zero-shot performance across a variety of downstream tasks, often competitive with much larger models, without sacrificing its core language modeling abilities.
Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, Noah Goodman
As Large Language Models (LLMs) become increasingly integrated into our everyday lives, understanding their ability to comprehend human mental states becomes critical for ensuring effective interactions. However, despite the recent attempts to assess the Theory-of-Mind (ToM) reasoning capabilities of LLMs, the degree to which these models can align with human ToM remains a nuanced topic of exploration. This is primarily due to two distinct challenges: (1) the presence of inconsistent results from previous evaluations, and (2) concerns surrounding the validity of existing evaluation methodologies. To address these challenges, we present a novel framework for procedurally generating evaluations with LLMs by populating causal templates. Using our framework, we create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations. We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations. Using BigToM, we evaluate the social reasoning capabilities of a variety of LLMs and compare model performances with human performance. Our results suggest that GPT4 has ToM capabilities that mirror human inference patterns, though less reliable, while other LLMs struggle.
Kyurae Kim, Jisu Oh, Kaiwen Wu, Yian Ma, Jacob R. Gardner
tl;dr: This paper provides the first convergence proof for black-box variational inference as-is, from which practical insights are obtained
We provide the first convergence guarantee for black-box variational inference (BBVI) with the reparameterization gradient. While preliminary investigations worked on simplified versions of BBVI (e.g., bounded domain, bounded support, only optimizing for the scale, and such), our setup does not need any such algorithmic modifications. Our results hold for log-smooth posterior densities with and without strong log-concavity and the location-scale variational family. Notably, our analysis reveals that certain algorithm design choices commonly employed in practice, such as nonlinear parameterizations of the scale matrix, can result in suboptimal convergence rates. Fortunately, running BBVI with proximal stochastic gradient descent fixes these limitations and thus achieves the strongest known convergence guarantees. We evaluate this theoretical insight by comparing proximal SGD against other standard implementations of BBVI on large-scale Bayesian inference problems.
Dor Tsur, Ziv Goldfeld, Kristjan Greenewald
Quantifying dependence between high-dimensional random variables is central to statistical learning and inference. Two classical methods are canonical correlation analysis (CCA), which identifies maximally correlated projected versions of the original variables, and Shannon's mutual information, which is a universal dependence measure that also captures high-order dependencies. However, CCA only accounts for linear dependence, which may be insufficient for certain applications, while mutual information is often infeasible to compute/estimate in high dimensions. This work proposes a middle ground in the form of a scalable information-theoretic generalization of CCA, termed max-sliced mutual information (mSMI). mSMI equals the maximal mutual information between low-dimensional projections of the high-dimensional variables, which reduces back to CCA in the Gaussian case. It enjoys the best of both worlds: capturing intricate dependencies in the data while being amenable to fast computation and scalable estimation from samples. We show that mSMI retains favorable structural properties of Shannon's mutual information, like variational forms and identification of independence. We then study statistical estimation of mSMI, propose an efficiently computable neural estimator, and couple it with formal non-asymptotic error bounds. We present experiments that demonstrate the utility of mSMI for several tasks, encompassing independence testing, multi-view representation learning, algorithmic fairness, and generative modeling. We observe that mSMI consistently outperforms competing methods with little-to-no computational overhead.
Louis Sharrock, Lester Mackey, Christopher Nemeth
tl;dr: We introduce new algorithms for sampling on constrained domains which are learning rate free.
We introduce a suite of new particle-based algorithms for sampling on constrained domains which are entirely learning rate free. Our approach leverages coin betting ideas from convex optimisation, and the viewpoint of constrained sampling as a mirrored optimisation problem on the space of probability measures. Based on this viewpoint, we also introduce a unifying framework for several existing constrained sampling algorithms, including mirrored Langevin dynamics and mirrored Stein variational gradient descent. We demonstrate the performance of our algorithms on a range of numerical examples, including sampling from targets on the simplex, sampling with fairness constraints, and constrained sampling problems in post-selection inference. Our results indicate that our algorithms achieve competitive performance with existing constrained sampling methods, without the need to tune any hyperparameters.
Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, Sergey Kolesnikov
tl;dr: Open-source offline and offline-to-online reinforcement learning library
CORL is an open-source library that provides thoroughly benchmarked single-file implementations of both deep offline and offline-to-online reinforcement learning algorithms. It emphasizes a simple developing experience with a straightforward codebase and a modern analysis tracking tool. In CORL, we isolate methods implementation into separate single files, making performance-relevant details easier to recognize. Additionally, an experiment tracking feature is available to help log metrics, hyperparameters, dependencies, and more to the cloud. Finally, we have ensured the reliability of the implementations by benchmarking commonly employed D4RL datasets providing a transparent source of results that can be reused for robust evaluation tools such as performance profiles, probability of improvement, or expected online performance.
Sivaramakrishnan Swaminathan, Antoine Dedieu, Rajkumar Vasudeva Raju, Murray Shanahan, Miguel Lazaro-Gredilla, Dileep George
tl;dr: Interpretable mechanistic model explaining emergent behavior and in-context learning in large language models.
In-context learning (ICL) is one of the most powerful and most unexpected capabilities to emerge in recent transformer-based large language models (LLMs). Yet the mechanisms that underlie it are poorly understood. In this paper, we demonstrate that comparable ICL capabilities can be acquired by an alternative sequence prediction learning method using clone-structured causal graphs (CSCGs). Moreover, a key property of CSCGs is that, unlike transformer-based LLMs, they are {\em interpretable}, which considerably simplifies the task of explaining how ICL works. Specifically, we show that it uses a combination of (a) learning template (schema) circuits for pattern completion, (b) retrieving relevant templates in a context-sensitive manner, and (c) rebinding of novel tokens to appropriate slots in the templates. We go on to marshall evidence for the hypothesis that similar mechanisms underlie ICL in LLMs. For example, we find that, with CSCGs as with LLMs, different capabilities emerge at different levels of overparameterization, suggesting that overparameterization helps in learning more complex template (schema) circuits. By showing how ICL can be achieved with small models and datasets, we open up a path to novel architectures, and take a vital step towards a more general understanding of the mechanics behind this important capability.
Shai Ben-David, Alex Bie, Clement Louis Canonne, Gautam Kamath, Vikrant Singhal
tl;dr: We connect public-private distribution learning to sample compression and list learning, which yields flexible ways to prove new upper and lower bounds on sample complexity.
We study the problem of private distribution learning with access to public data. In this setup, which we refer to as *public-private learning*, the learner is given public and private samples drawn from an unknown distribution $p$ belonging to a class $\mathcal Q$, with the goal of outputting an estimate of $p$ while adhering to privacy constraints (here, pure differential privacy) only with respect to the private samples. We show that the public-private learnability of a class $\mathcal Q$ is connected to the existence of a sample compression scheme for $\mathcal Q$, as well as to an intermediate notion we refer to as \emph{list learning}. Leveraging this connection: (1) approximately recovers previous results on Gaussians over $\mathbb R^d$; and (2) leads to new ones, including sample complexity upper bounds for arbitrary $k$-mixtures of Gaussians over $\mathbb R^d$, results for agnostic and distribution-shift resistant learners, as well as closure properties for public-private learnability under taking mixtures and products of distributions. Finally, via the connection to list learning, we show that for Gaussians in $\mathbb R^d$, at least $d$ public samples are necessary for private learnability, which is close to the known upper bound of $d+1$ public samples.
Anders Aamand, Justin Y. Chen, Allen Liu, Sandeep Silwal, Pattara Sukprasert, Ali Vakilian, Fred Zhang
tl;dr: We give a constant-factor approximation algorithm for individual preference (IP) stability clustering.
Individual preference (IP) stability, introduced by Ahmadi et al. (ICML 2022), is a natural clustering objective inspired by stability and fairness constraints. A clustering is $\alpha$-IP stable if the average distance of every data point to its own cluster is at most $\alpha$ times the average distance to any other cluster. Unfortunately, determining if a dataset admits a $1$-IP stable clustering is NP-Hard. Moreover, before this work, it was unknown if an $o(n)$-IP stable clustering always exists, as the prior state of the art only guaranteed an $O(n)$-IP stable clustering. We close this gap in understanding and show that an $O(1)$-IP stable clustering always exists for general metrics, and we give an efficient algorithm which outputs such a clustering. We also introduce generalizations of IP stability beyond average distance and give efficient near optimal algorithms in the cases where we consider the maximum and minimum distances within and between clusters.
Syamantak Kumar, Purnamrita Sarkar
tl;dr: We prove near-optimal rate of convergence of Oja's Streaming PCA algorithm for data sampled from a Markov chain and show that it is better than discarding data to reduce dependence at finding the leading eigenvector.
Since its inception in 1982, Oja's algorithm has become an established method for streaming principle component analysis (PCA). We study the problem of streaming PCA, where the data-points are sampled from an irreducible, aperiodic, and reversible Markov chain starting in stationarity. Our goal is to estimate the top eigenvector of the unknown covariance matrix of the stationary distribution. This setting has implications in scenarios where data can solely be sampled from a Markov Chain Monte Carlo (MCMC) type algorithm, and the objective is to perform inference on parameters of the stationary distribution. Most convergence guarantees for Oja's algorithm in the literature assume that the data-points are sampled IID. For data streams with Markovian dependence, one typically downsamples the data to get a "nearly" independent data stream. In this paper, we obtain the first near-optimal rate for Oja's algorithm on the entire data, where we remove the logarithmic dependence on the sample size, $n$, resulting from throwing data away in downsampling strategies.
David Woodruff, Peilin Zhong, Samson Zhou
Clustering is an important technique for identifying structural information in large-scale data analysis, where the underlying dataset may be too large to store. In many applications, recent data can provide more accurate information and thus older data past a certain time is expired. The sliding window model captures these desired properties and thus there has been substantial interest in clustering in the sliding window model. In this paper, we give the first algorithm that achieves near-optimal $(1+\varepsilon)$-approximation to $(k,z)$-clustering in the sliding window model. Our algorithm uses $\frac{k}{\min(\varepsilon^4,\varepsilon^{2+z})}\,\text{polylog}\frac{n\Delta}{\varepsilon}$ words of space when the points are from $[\Delta]^d$, thus significantly improving on works by Braverman et. al. (SODA 2016), Borassi et. al. (NeurIPS 2021), and Epasto et. al. (SODA 2022). Along the way, we develop a data structure for clustering called an online coreset, which outputs a coreset not only for the end of a stream, but also for all prefixes of the stream. Our online coreset samples $\frac{k}{\min(\varepsilon^4,\varepsilon^{2+z})}\,\text{polylog}\frac{n\Delta}{\varepsilon}$ points from the stream. We then show that any online coreset requires $\Omega\left(\frac{k}{\varepsilon^2}\log n\right)$ samples, which shows a separation between the problem of constructing an offline coreset, i.e., constructing online coresets is strictly harder. Our results also extend to general metrics on $[\Delta]^d$ and are near-optimal in light of a $\Omega\left(\frac{k}{\varepsilon^{2+z}}\right)$ lower bound for the size of an offline coreset.
Honghao Wei, Xin Liu, Weina Wang, Lei Ying
tl;dr: We propose a sample efficient RL method that accelerates learning in mixed systems.
This paper considers a class of reinforcement learning problems, which involve systems with two types of states: stochastic and pseudo-stochastic. In such systems, stochastic states follow a stochastic transition kernel while the transitions of pseudo-stochastic states are deterministic {\em given} the stochastic states/transitions. We refer to such systems as mixed systems, which are widely used in various applications, including Manufacturing systems, communication networks, and queueing networks. We propose a sample-efficient RL method that accelerates learning by generating augmented data samples. The proposed algorithm is data-driven (model-free), but it learns the policy from data samples from both real and augmented samples. This method significantly improves learning by reducing the sample complexity such that the dataset only needs to have sufficient coverage of the stochastic states. We analyze the sample complexity of the proposed method under Fitted Q Iteration (FQI) and demonstrate that the optimality gap decreases as $O\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{1}{m}}\right),$ where $n$ represents the number of real samples, and $m$ is the number of augmented samples per real sample. It is important to note that without augmented samples, the optimality gap is $O(1)$ due to the insufficient data coverage of the pseudo-stochastic states. Our experimental results on multiple queueing network applications confirm that the proposed method indeed significantly accelerates both deep Q-learning and deep policy gradient.
Rylan Schaeffer, Mikail Khona, Tzuhsuan Ma, Cristobal Eyzaguirre, Sanmi Koyejo, Ila R Fiete
tl;dr: SSL learning representations of space yields multi-modular grid cells
To solve the spatial problems of mapping, localization and navigation, the mammalian lineage has developed striking spatial representations. One important spatial representation is the Nobel-prize winning grid cells: neurons that represent self-location, a local and aperiodic quantity, with seemingly bizarre non-local and spatially periodic activity patterns of a few discrete periods. Why has the mammalian lineage learnt this peculiar grid representation? Mathematical analysis suggests that this multi-periodic representation has excellent properties as an algebraic code with high capacity and intrinsic error-correction, but to date, synthesis of multi-modular grid cells in deep recurrent neural networks remains absent. In this work, we begin by identifying key insights from four families of approaches to answering the grid cell question: dynamical systems, coding theory, function optimization and supervised deep learning. We then leverage our insights to propose a new approach that elegantly combines the strengths of all four approaches. Our approach is a self-supervised learning (SSL) framework - including data, data augmentations, loss functions and a network architecture - motivated from a normative perspective, with no access to supervised position information. Without making assumptions about internal or readout representations, we show that multiple grid cell modules can emerge in networks trained on our SSL framework and that the networks generalize significantly beyond their training distribution. This work contains insights for neuroscientists interested in the origins of grid cells as well as machine learning researchers interested in novel SSL frameworks.
Hugo Cui, Lenka Zdeborova
tl;dr: We provide sharp asymptotics for the test error of non-linear denoising auto-encoders in high dimensions.
We address the problem of denoising data from a Gaussian mixture using a two-layer non-linear autoencoder with tied weights and a skip connection. We consider the high-dimensional limit where the number of training samples and the input dimension jointly tend to infinity while the number of hidden units remains bounded. We provide closed-form expressions for the denoising mean-squared test error. Building on this result, we quantitatively characterize the advantage of the considered architecture over the autoencoder without the skip connection that relates closely to principal component analysis. We further show that our results capture accurately the learning curves on a range of real datasets.
Duy Minh Ho Nguyen, Hoang Nguyen, Nghiem Tuong Diep, Tan Ngoc Pham, Tri Cao, Binh T. Nguyen, Paul Swoboda, Nhat Ho, Shadi Albarqouni, Pengtao Xie, Daniel Sonntag, Mathias Niepert
tl;dr: a work on large-scale medical pre-trained models
Obtaining large pre-trained models that can be fine-tuned to new tasks with limited annotated samples has remained an open challenge for medical imaging data. While pre-trained networks on ImageNet and vision-language foundation models trained on web-scale data are the prevailing approaches, their effectiveness on medical tasks is limited due to the significant domain shift between natural and medical images. To bridge this gap, we introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets. We have collected approximately 1.3 million medical images from 55 publicly available datasets, covering a large number of organs and modalities such as CT, MRI, X-ray, and Ultrasound. We benchmark several state-of-the-art self-supervised algorithms on this dataset and propose a novel self-supervised contrastive learning algorithm using a graph-matching formulation. The proposed approach makes three contributions: (i) it integrates prior pair-wise image similarity metrics based on local and global information; (ii) it captures the structural constraints of feature embeddings through a loss function constructed through a combinatorial graph-matching objective, and (iii) it can be trained efficiently end-to-end using modern gradient-estimation techniques for black-box solvers. We thoroughly evaluate the proposed LVM-Med on 15 downstream medical tasks ranging from segmentation and classification to object detection, and both for the in and out-of-distribution settings. LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models. For challenging tasks such as Brain Tumor Classification or Diabetic Retinopathy Grading, LVM-Med improves previous vision-language models trained on 1 billion masks by 6-7% while using only a ResNet-50.
Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, Huazhe Xu
tl;dr: We introduce RL-ViGen: a novel Reinforcement Learning Benchmark for Visual Generalization, which contains diverse tasks and a wide spectrum of generalization types.
Visual Reinforcement Learning (Visual RL), coupled with high-dimensional observations, has consistently confronted the long-standing challenge of out-of-distribution generalization. Despite the focus on algorithms aimed at resolving visual generalization problems, we argue that the devil is in the existing benchmarks as they are restricted to isolated tasks and generalization categories, undermining a comprehensive evaluation of agents' visual generalization capabilities. To bridge this gap, we introduce RL-ViGen: a novel **R**einforcement **L**earning Benchmark for **Vi**sual **Gen**eralization, which contains diverse tasks and a wide spectrum of generalization types, thereby facilitating the derivation of more reliable conclusions. Furthermore, RL-ViGen incorporates the latest generalization visual RL algorithms into a unified framework, under which the experiment results indicate that no single existing algorithm has prevailed universally across tasks. Our aspiration is that Rl-ViGen will serve as a catalyst in this area, and lay a foundation for the future creation of universal visual generalization RL agents suitable for real-world scenarios. Access to our code and implemented algorithms is provided at https://gemcollector.github.io/RL-ViGen/.
Jonathan Kelner, Frederic Koehler, Raghu Meka, Dhruv Rohatgi
tl;dr: We provably generalize Lasso to tolerate a small number of approximate dependencies, via a broad algorithmic framework of feature adaptation.
Sparse linear regression is a central problem in high-dimensional statistics. We study the correlated random design setting, where the covariates are drawn from a multivariate Gaussian $N(0,\Sigma)$, and we seek an estimator with small excess risk. If the true signal is $t$-sparse, information-theoretically, it is possible to achieve strong recovery guarantees with only $O(t\log n)$ samples. However, computationally efficient algorithms have sample complexity linear in (some variant of) the *condition number* of $\Sigma$. Classical algorithms such as the Lasso can require significantly more samples than necessary even if there is only a single sparse approximate dependency among the covariates. We provide a polynomial-time algorithm that, given $\Sigma$, automatically adapts the Lasso to tolerate a small number of approximate dependencies. In particular, we achieve near-optimal sample complexity for constant sparsity and if $\Sigma$ has few ``outlier'' eigenvalues. Our algorithm fits into a broader framework of *feature adaptation* for sparse linear regression with ill-conditioned covariates. With this framework, we additionally provide the first polynomial-factor improvement over brute-force search for constant sparsity $t$ and arbitrary covariance $\Sigma$.
Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, Geovani Rizk
The theory underlying robust distributed learning algorithms, designed to resist adversarial machines, matches empirical observations when data is homogeneous. Under data heterogeneity however, which is the norm in practical scenarios, established lower bounds on the learning error are essentially vacuous and greatly mismatch empirical observations. This is because the heterogeneity model considered is too restrictive and does not cover basic learning tasks such as least-squares regression. We consider in this paper a more realistic heterogeneity model, namely $(G,B)$-gradient dissimilarity, and show that it covers a larger class of learning problems than existing theory. Notably, we show that the breakdown point under heterogeneity is lower than the classical fraction $\frac{1}{2}$. We also prove a new lower bound on the learning error of any distributed learning algorithm. We derive a matching upper bound for a robust variant of distributed gradient descent, and empirically show that our analysis reduces the gap between theory and practice.
Jin Xu, Emilien Dupont, Kaspar Märtens, Tom Rainforth, Yee Whye Teh
tl;dr: We introduce a new class of expressive stochastic process models which are constructed by stacking sequences of neural parameterised Markov transition operators in function space.
We introduce Markov Neural Processes (MNPs), a new class of Stochastic Processes (SPs) which are constructed by stacking sequences of neural parameterised Markov transition operators in function space. We prove that these Markov transition operators can preserve the exchangeability and consistency of SPs. Therefore, the proposed iterative construction adds substantial flexibility and expressivity to the original framework of Neural Processes (NPs) without compromising consistency or adding restrictions. Our experiments demonstrate clear advantages of MNPs over baseline models on a variety of tasks.
Ya-Ping Hsieh, Mohammad Reza Karimi Jaghargh, Andreas Krause, Panayotis Mertikopoulos
tl;dr: Riemannian stochastic optimization methods avoid strict saddle points
Many modern machine learning applications - from online principal component analysis to covariance matrix identification and dictionary learning - can be formulated as minimization problems on Riemannian manifolds, typically solved with a Riemannian stochastic gradient method (or some variant thereof). However, in many cases of interest, the resulting minimization problem is _not_ geodesically convex, so the convergence of the chosen solver to a desirable solution - i.e., a local minimizer - is by no means guaranteed. In this paper, we study precisely this question, that is, whether stochastic Riemannian optimization algorithms are guaranteed to avoid saddle points with probability $1$. For generality, we study a family of retraction-based methods which, in addition to having a potentially much lower per-iteration cost relative to Riemannian gradient descent, include other widely used algorithms, such as natural policy gradient methods and mirror descent in ordinary convex spaces. In this general setting, we show that, under mild assumptions for the ambient manifold and the oracle providing gradient information, the policies under study avoid strict saddle points / submanifolds with probability $1$, from any initial condition. This result provides an important sanity check for the use of gradient methods on manifolds as it shows that, almost always, the end state of a stochastic Riemannian algorithm can only be a local minimizer.
Liya Hu, Zhiang Dong, Jingyuan Chen, Guifeng Wang, Zhihua Wang, Zhou Zhao, Fei Wu
The focus of our work is on diagnostic tasks in personalized learning, such as cognitive diagnosis and knowledge tracing. The goal of these tasks is to assess students' latent proficiency on knowledge concepts through analyzing their historical learning records. However, existing research has been limited to single-course scenarios; cross-course studies have not been explored due to a lack of dataset. We address this issue by constructing PTADisc, a Diverse, Immense, Student-centered dataset that emphasizes its sufficient Cross-course information for personalized learning. PTADisc includes 74 courses, 1,530,100 students, 4,054 concepts, 225,615 problems, and over 680 million student response logs. Based on PTADisc, we developed a model-agnostic Cross-Course Learner Modeling Framework (CCLMF) which utilizes relationships between students' proficiency across courses to alleviate the difficulty of diagnosing student knowledge state in cold-start scenarios. CCLMF uses a meta network to generate personalized mapping functions between courses. The experimental results on PTADisc verify the effectiveness of CCLMF with an average improvement of 4.2% on AUC. We also report the performance of baseline models for cognitive diagnosis and knowledge tracing over PTADisc, demonstrating that our dataset supports a wide scope of research in personalized learning. Additionally, PTADisc contains valuable programming logs and student-group information that are worth exploring in the future.
Jianing Li, Vardan Papyan
The ResNet architecture has been widely adopted in deep learning due to its significant boost to performance through the use of simple skip connections, yet the underlying mechanisms leading to its success remain largely unknown. In this paper, we conduct a thorough empirical study of the ResNet architecture in classification tasks by linearizing its constituent residual blocks using Residual Jacobians and measuring their singular value decompositions. Our measurements ([code](https://colab.research.google.com/drive/1yKjEg2yF616tnZFAfuN0aQ-E9v3JmyjN?usp=sharing)) reveal a process called Residual Alignment (RA) characterized by four properties: - **(RA1):** intermediate representations of a given input are *equispaced* on a *line*, embedded in high dimensional space, as observed by Gai and Zhang [2021]; - **(RA2):** top left and right singular vectors of Residual Jacobians align with each other and across different depths; - **(RA3):** Residual Jacobians are at most rank $C$ for fully-connected ResNets, where $C$ is the number of classes; and - **(RA4):** top singular values of Residual Jacobians scale inversely with depth. RA consistently occurs in models that generalize well, in both fully-connected and convolutional architectures, across various depths and widths, for varying numbers of classes, on all tested benchmark datasets, but ceases to occur once the skip connections are removed. It also provably occurs in a novel mathematical model we propose. This phenomenon reveals a strong alignment between residual branches of a ResNet (RA2+4), imparting a highly rigid geometric structure to the intermediate representations as they progress *linearly* through the network (RA1) up to the final layer, where they undergo Neural Collapse.
LILI YU, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, Mike Lewis
tl;dr: Megabyte enables sub-quadratic self-attention, much larger feedforward layers and improved parallelism during decoding. It can effectively model text, image, and audio directly from bytes.
Autoregressive transformers are spectacular models for short sequences but scale poorly to long sequences such as high-resolution images, podcasts, code, or books. We proposed Megabyte, a multi-scale decoder architecture that enables end-to-end differentiable modeling of sequences of over one million bytes. Megabyte segments sequences into patches and uses a local submodel within patches and a global model between patches. This enables sub-quadratic self-attention, much larger feedforward layers for the same compute, and improved parallelism during decoding---unlocking better performance at reduced cost for both training and generation. Extensive experiments show that Megabyte allows byte-level models to perform competitively with subword models on long context language modeling, achieve state-of-the-art density estimation on ImageNet, and model audio from raw files. Together, these results establish the viability of tokenization-free autoregressive sequence modeling at scale.
Noah Wiederhold, Ava Megyeri, DiMaggio Paris, Sean Banerjee, Natasha Kholgade Banerjee
tl;dr: Dataset of human-human handover with 136 objects by 20 subject pairs with multiview RGBD images, 3D point clouds, hand/object 2D/3D segmentation, and ratings, for handover parameter study, hand-object pose estimation, and human-robot handover.
We present the HOH (Human-Object-Human) Handover Dataset, a large object count dataset with 136 objects, to accelerate data-driven research on handover studies, human-robot handover implementation, and artificial intelligence (AI) on handover parameter estimation from 2D and 3D data of two-person interactions. HOH contains multi-view RGB and depth data, skeletons, fused point clouds, grasp type and handedness labels, object, giver hand, and receiver hand 2D and 3D segmentations, giver and receiver comfort ratings, and paired object metadata and aligned 3D models for 2,720 handover interactions spanning 136 objects and 20 giver-receiver pairs—40 with role-reversal—organized from 40 participants. We also show experimental results of neural networks trained using HOH to perform grasp, orientation, and trajectory prediction. As the only fully markerless handover capture dataset, HOH represents natural human-human handover interactions, overcoming challenges with markered datasets that require specific suiting for body tracking, and lack high-resolution hand tracking. To date, HOH is the largest handover dataset in terms of object count, participant count, pairs with role reversal accounted for, and total interactions captured.
Eshaan Nichani, Alex Damian, Jason D. Lee
tl;dr: We theoretically analyze the features learned by gradient descent on three-layer neural networks, and show that there exist classes of functions efficiently learnable by three-layer networks but not by two-layer networks.
One of the central questions in the theory of deep learning is to understand how neural networks learn hierarchical features. The ability of deep networks to extract salient features is crucial to both their outstanding generalization ability and the modern deep learning paradigm of pretraining and finetuneing. However, this feature learning process remains poorly understood from a theoretical perspective, with existing analyses largely restricted to two-layer networks. In this work we show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks. We analyze the features learned by a three-layer network trained with layer-wise gradient descent, and present a general purpose theorem which upper bounds the sample complexity and width needed to achieve low test error when the target has specific hierarchical structure. We instantiate our framework in specific statistical learning settings -- single-index models and functions of quadratic features -- and show that in the latter setting three-layer networks obtain a sample complexity improvement over all existing guarantees for two-layer networks. Crucially, this sample complexity improvement relies on the ability of three-layer networks to efficiently learn *nonlinear* features. We then establish a concrete optimization-based depth separation by constructing a function which is efficiently learnable via gradient descent on a three-layer network, yet cannot be learned efficiently by a two-layer network. Our work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, Martin Wattenberg
tl;dr: We introduce Inference-Time Intervention (ITI), a light-weight technique that enhances the truthfulness of large language models (LLMs).
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the "truthfulness" of large language models (LLMs). ITI operates by shifting model activations during inference, following a learned set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from $32.5\%$ to $65.1\%$. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
Haolin Liu, Chen-Yu Wei, Julian Zimmert
We consider the adversarial linear contextual bandit problem, where the loss vectors are selected fully adversarially and the per-round action set (i.e. the context) is drawn from a fixed distribution. Existing methods for this problem either require access to a simulator to generate free i.i.d. contexts, achieve a sub-optimal regret no better than $\tilde{\mathcal{O}}(T^{\frac{5}{6}})$, or are computationally inefficient. We greatly improve these results by achieving a regret of $\tilde{\mathcal{O}}(\sqrt{T})$ without a simulator, while maintaining computational efficiency when the action set in each round is small. In the special case of sleeping bandits with adversarial loss and stochastic arm availability, our result answers affirmatively the open question by [SGV20] on whether there exists a polynomial-time algorithm with $poly(d)\sqrt{T}$ regret. Our approach naturally handles the case where the loss is linear up to an additive misspecification error, and our regret shows near-optimal dependence on the magnitude of the error.
Blake Bordelon, Cengiz Pehlevan
tl;dr: A theoretical analysis of finite width effects in strongly feature learning neural networks from dynamical mean field theory.
We analyze the dynamics of finite width effects in wide but finite feature learning neural networks. Starting from a dynamical mean field theory description of infinite width deep neural network kernel and prediction dynamics, we provide a characterization of the $\mathcal{O}(1/\sqrt{\text{width}})$ fluctuations of the DMFT order parameters over random initializations of the network weights. Our results, while perturbative in width, unlike prior analyses, are non-perturbative in the strength of feature learning. In the lazy limit of network training, all kernels are random but static in time and the prediction variance has a universal form. However, in the rich, feature learning regime, the fluctuations of the kernels and predictions are dynamically coupled with a variance that can be computed self-consistently. In two layer networks, we show how feature learning can dynamically reduce the variance of the final tangent kernel and final network predictions. We also show how initialization variance can slow down online learning in wide but finite networks. In deeper networks, kernel variance can dramatically accumulate through subsequent layers at large feature learning strengths, but feature learning continues to improve the signal-to-noise ratio of the feature kernels. In discrete time, we demonstrate that large learning rate phenomena such as edge of stability effects can be well captured by infinite width dynamics and that initialization variance can decrease dynamically. For CNNs trained on CIFAR-10, we empirically find significant corrections to both the bias and variance of network dynamics due to finite width.
Felipe Maia Polo, Yuekai Sun, Moulinath Banerjee
tl;dr: We derive approximations for the testing errors of three regression-based conditional independence (CI) tests depending on misspecification. We introduce the Rao-Blackwellized Predictor Test (RBPT), a CI regression-based misspecification-robust test.
Conditional independence (CI) testing is a fundamental and challenging task in modern statistics and machine learning. Many modern methods for CI testing rely on powerful supervised learning methods to learn regression functions or Bayes predictors as an intermediate step; we refer to this class of tests as regression-based tests. Although these methods are guaranteed to control Type-I error when the supervised learning methods accurately estimate the regression functions or Bayes predictors of interest, their behavior is less understood when they fail due to misspecified inductive biases; in other words, when the employed models are not flexible enough or when the training algorithm does not induce the desired predictors. Then, we study the performance of regression-based CI tests under misspecified inductive biases. Namely, we propose new approximations or upper bounds for the testing errors of three regression-based tests that depend on misspecification errors. Moreover, we introduce the Rao-Blackwellized Predictor Test (RBPT), a regression-based CI test robust against misspecified inductive biases. Finally, we conduct experiments with artificial and real data, showcasing the usefulness of our theory and methods.
Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean Harb, Xinlei Pan, Yan Wang, Xiangyu Chen, John D Co-Reyes, Rishabh Agarwal, Rebecca Roelofs, Yao Lu, Nico Montali, Paul Mougin, Zoey Zeyu Yang, Brandyn White, Aleksandra Faust, Rowan Thomas McAllister, Dragomir Anguelov, Benjamin Sapp
tl;dr: An autonomous driving simulator for behavior problems with hardware acceleration and intelligent out-of-the-box agents.
Simulation is an essential tool to develop and benchmark autonomous vehicle planning software in a safe and cost-effective manner. However, realistic simulation requires accurate modeling of multi-agent interactive behaviors to be trustworthy, behaviors which can be highly nuanced and complex. To address these challenges, we introduce Waymax, a new data-driven simulator for autonomous driving in multi-agent scenes, designed for large-scale simulation and testing. Waymax uses publicly-released, real-world driving data (e.g., the Waymo Open Motion Dataset) to initialize or play back a diverse set of multi-agent simulated scenarios. It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training, making it suitable for modern large-scale, distributed machine learning workflows. To support online training and evaluation, Waymax includes several learned and hard-coded behavior models that allow for realistic interaction within simulation. To supplement Waymax, we benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions, where we highlight the effectiveness of routes as guidance for planning agents and the ability of RL to overfit against simulated agents.
Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang, Xiangkun Hu, Zheng Zhang, Yue Zhang
tl;dr: This paper explores the reliability of current evaluation methods for Qpen-QA, introduces a new task, QA-Eval, and presents a dataset that aids in developing better automatic evaluators.
This study focuses on the evaluation of the Open Question Answering (Open-QA) task, which can directly estimate the factuality of large language models (LLMs). Current automatic evaluation methods have shown limitations, indicating that human evaluation still remains the most reliable approach. We introduce a new task, QA Evaluation (QA-Eval) and the corresponding dataset EVOUNA, designed to assess the accuracy of AI-generated answers in relation to standard answers within Open-QA. Our evaluation of these methods utilizes human-annotated results to measure their performance. Specifically, the work investigates methods that show high correlation with human evaluations, deeming them more reliable. We also discuss the pitfalls of current methods and methods to improve LLM-based evaluators. We believe this new QA-Eval task and corresponding dataset EVOUNA will facilitate the development of more effective automatic evaluation tools and prove valuable for future research in this area. All resources are available at https://github.com/wangcunxiang/QA-Eval and it is under the Apache-2.0 License.
Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein Hazimeh, Otilia Stretcu, Wei Qiao, Yintao Liu, Merve Kaya, Cyrus Rashtchian, Ariel Fuxman, Mehmet Nejat Tek, Sven Gowal
tl;dr: A benchmark simulating bad actors trying to circumvent image content filters by heavily obfuscating the images.
Automated content filtering and moderation is an important tool that allows online platforms to build striving user communities that facilitate cooperation and prevent abuse. Unfortunately, resourceful actors try to bypass automated filters in a bid to post content that violate platform policies and codes of conduct. To reach this goal, these malicious actors may obfuscate policy violating images (e.g., overlay harmful images by carefully selected benign images or visual patterns) to prevent machine learning models from reaching the correct decision. In this paper, we invite researchers to tackle this specific issue and present a new image benchmark. This benchmark, based on ImageNet, simulates the type of obfuscations created by malicious actors. It goes beyond Image-Net-C and ImageNet-C-bar by proposing general, drastic, adversarial modifications that preserve the original content intent. It aims to tackle a more common adversarial threat than the one considered by lp-norm bounded adversaries. We evaluate 33 pretrained models on the benchmark and train models with different augmentations, architectures and training methods on subsets of the obfuscations to measure generalization. Our hope is that this benchmark will encourage researchers to test their models and methods and try to find new approaches that are more robust to these obfuscations.
Beepul Bharti, Paul Yi, Jeremias Sulam
As the use of machine learning models in real world high-stakes decision settings continues to grow, it is highly important that we are able to audit and control for any potential fairness violations these models may exhibit towards certain groups. To do so, one naturally requires access to sensitive attributes, such as demographics, biological sex, or other potentially sensitive features that determine group membership. Unfortunately, in many settings, this information is often unavailable. In this work we study the well known equalized odds (EOD) definition of fairness. In a setting without sensitive attributes, we first provide tight and computable upper bounds for the EOD violation of a predictor. These bounds precisely reflect the worst possible EOD violation. Second, we demonstrate how one can provably control the worst-case EOD by a new post-processing correction method. Our results characterize when directly controlling for EOD with respect to the predicted sensitive attributes is -- and when is not -- optimal when it comes to controlling worst-case EOD. Our results hold under assumptions that are milder than previous works, and we illustrate these results with experiments on synthetic and real datasets.
Zeren Tan, Yang Tian, Jian Li
tl;dr: A new framework, which allows flexible sampling distribution, improves stability and local fidelity of LIME both theoretically and empirically.
As black-box machine learning models become more complex and are applied in high-stakes settings, the need for providing explanations for their predictions becomes crucial. Although Local Interpretable Model-agnostic Explanations (LIME) \cite{ribeiro2016should} is a widely adopted method for understanding model behavior, it suffers from instability with respect to random seeds \cite{zafar2019dlime, shankaranarayana2019alime, bansal2020sam} and exhibits low local fidelity (i.e., how the explanation explains model's local behaviors) \cite{rahnama2019study, laugel2018defining}. Our study demonstrates that this instability is caused by small sample weights, resulting in the dominance of regularization and slow convergence. Additionally, LIME's sampling approach is non-local and biased towards the reference, leading to diminished local fidelity and instability to references. To address these challenges, we propose \textsc{Glime}, an enhanced framework that extends LIME and unifies several previous methods. Within the \textsc{Glime} framework, we derive an equivalent formulation of LIME that achieves significantly faster convergence and improved stability. By employing a local and unbiased sampling distribution, \textsc{Glime} generates explanations with higher local fidelity compared to LIME, while being independent of the reference choice. Moreover, \textsc{Glime} offers users the flexibility to choose sampling distribution based on their specific scenarios.
Yifan Yang, Peiyao Xiao, Kaiyi Ji
Federated bilevel optimization (FBO) has shown great potential recently in machine learning and edge computing due to the emerging nested optimization structure in meta-learning, fine-tuning, hyperparameter tuning, etc. However, existing FBO algorithms often involve complicated computations and require multiple sub-loops per iteration, each of which contains a number of communication rounds. In this paper, we propose a simple and flexible FBO framework named SimFBO, which is easy to implement without sub-loops, and includes a generalized server-side aggregation and update for improving communication efficiency. We further propose System-level heterogeneity robust FBO (ShroFBO) as a variant of SimFBO with stronger resilience to heterogeneous local computation. We show that SimFBO and ShroFBO provably achieve a linear convergence speedup with partial client participation and client sampling without replacement, as well as improved sample and communication complexities. Experiments demonstrate the effectiveness of the proposed methods over existing FBO algorithms.
Erin George, Michael Murray, William Joseph Swartworth, Deanna Needell
We study benign overfitting in two-layer ReLU networks trained using gradient descent and hinge loss on noisy data for binary classification. In particular, we consider linearly separable data for which a relatively small proportion of labels are corrupted or flipped. We identify conditions on the margin of the clean data that give rise to three distinct training outcomes: benign overfitting, in which zero loss is achieved and with high probability test data is classified correctly; overfitting, in which zero loss is achieved but test data is misclassified with probability lower bounded by a constant; and non-overfitting, in which clean points, but not corrupt points, achieve zero loss and again with high probability test data is classified correctly. Our analysis provides a fine-grained description of the dynamics of neurons throughout training and reveals two distinct phases: in the first phase clean points achieve close to zero loss, in the second phase clean points oscillate on the boundary of zero loss while corrupt points either converge towards zero loss or are eventually zeroed by the network. We prove these results using a combinatorial approach that involves bounding the number of clean versus corrupt updates during these phases of training.
Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens Continente, Larisa Markeeva, Dylan Sunil Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alexandre Fréchette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen, Andrew Zisserman, Joao Carreira
tl;dr: Comprehensive evaluation benchmark for multimodal video models focused on skills (memory, abstraction, physics, semantics) and types of reasoning (descriptive, explanatory, predictive, counterfactual)
We propose a novel multimodal video benchmark - the Perception Test - to evaluate the perception and reasoning skills of pre-trained multimodal models (e.g. Flamingo, BEiT-3, or GPT-4). Compared to existing benchmarks that focus on computational tasks (e.g. classification, detection or tracking), the Perception Test focuses on skills (Memory, Abstraction, Physics, Semantics) and types of reasoning (descriptive, explanatory, predictive, counterfactual) across video, audio, and text modalities, to provide a comprehensive and efficient evaluation tool. The benchmark probes pre-trained models for their transfer capabilities, in a zero-shot / few-shot or limited finetuning regime. For these purposes, the Perception Test introduces 11.6k real-world videos, 23s average length, designed to show perceptually interesting situations, filmed by around 100 participants worldwide. The videos are densely annotated with six types of labels (multiple-choice and grounded video question-answers, object and point tracks, temporal action and sound segments), enabling both language and non-language evaluations. The fine-tuning and validation splits of the benchmark are publicly available (CC-BY license), in addition to a challenge server with a held-out test split. Human baseline results compared to state-of-the-art video QA models show a significant gap in performance (91.4% vs 45.8%), suggesting that there is significant room for improvement in multimodal video understanding. Dataset, baselines code, and challenge server are available at https://github.com/deepmind/perception_test
Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek Kar, Mohammad Norouzi, Deqing Sun, David J. Fleet
tl;dr: Advances in denoising diffusion to handle limited, noisy, incomplete labels of dense vision tasks, specifically monocular depth estimation and optical flow, achieving sota results
Denoising diffusion probabilistic models have transformed image generation with their impressive fidelity and diversity. We show that they also excel in estimating optical flow and monocular depth, surprisingly without task-specific architectures and loss functions that are predominant for these tasks. Compared to the point estimates of conventional regression-based methods, diffusion models also enable Monte Carlo inference, e.g., capturing uncertainty and ambiguity in flow and depth. With self-supervised pre-training, the combined use of synthetic and real data for supervised training, and technical innovations (infilling and step-unrolled denoising diffusion training) to handle noisy-incomplete training data, one can train state-of-the-art diffusion models for depth and optical flow estimation, with additional zero-shot coarse-to-fine refinement for high resolution estimates. Extensive experiments focus on quantitative performance against benchmarks, ablations, and the model's ability to capture uncertainty and multimodality, and impute missing values. Our model obtains a state-of-the-art relative depth error of 0.074 on the indoor NYU benchmark and an Fl-all score of 3.26\% on the KITTI optical flow benchmark, about 25\% better than the best published method.
Shreyas Malakarjun Patil, Loizos Michael, Constantine Dovrolis
tl;dr: In this work, we present an approach that utilizes both neural network unit and edge pruning techniques, as well as a network analysis tool, to reveal the previously unknown hierarchical modularity underlying a given task.
Natural target functions and tasks typically exhibit hierarchical modularity -- they can be broken down into simpler sub-functions that are organized in a hierarchy. Such sub-functions have two important features: they have a distinct set of inputs (input-separability) and they are reused as inputs higher in the hierarchy (reusability). Previous studies have established that hierarchically modular neural networks, which are inherently sparse, offer benefits such as learning efficiency, generalization, multi-task learning, and transfer. However, identifying the underlying sub-functions and their hierarchical structure for a given task can be challenging. The high-level question in this work is: if we learn a task using a sufficiently deep neural network, how can we uncover the underlying hierarchy of sub-functions in that task? As a starting point, we examine the domain of Boolean functions, where it is easier to determine whether a task is hierarchically modular. We propose an approach based on iterative unit and edge pruning (during training), combined with network analysis for module detection and hierarchy inference. Finally, we demonstrate that this method can uncover the hierarchical modularity of a wide range of Boolean functions and two vision tasks based on the MNIST digits dataset.
Isaac Reid, Adrian Weller, Krzysztof Marcin Choromanski
tl;dr: A novel QMC mechanism that induces correlations between the terminations of random walkers on a graph to improve kernel estimator variance.
We present a novel mechanism to improve the accuracy of the recently-introduced class of graph random features (GRFs). Our method induces negative correlations between the lengths of the algorithm's random walks by imposing antithetic termination: a procedure to sample more diverse random walks which may be of independent interest. It has a trivial drop-in implementation. We derive strong theoretical guarantees on the properties of these quasi-Monte Carlo GRFs (q-GRFs), proving that they yield lower-variance estimators of the $2$-regularised Laplacian kernel under mild conditions. Remarkably, our results hold for any graph topology. We demonstrate empirical accuracy improvements on a variety of tasks including a new practical application: time-efficient approximation of the graph diffusion process. To our knowledge, q-GRFs constitute the first rigorously studied quasi-Monte Carlo scheme for kernels defined on combinatorial objects, inviting new research on correlations between graph random walks.
Lorenzo Baldassari, Ali Siahkoohi, Josselin Garnier, Knut Solna, Maarten V. de Hoop
tl;dr: We propose a method to learn the posterior distribution in infinite-dimensional Bayesian linear inverse problems using amortized conditional score-based generative models.
Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions—the conditional denoising estimator—can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.
Zheng Chen, Yulun Zhang, Ding Liu, Bin Xia, Jinjin Gu, Linghe Kong, Xin Yuan
tl;dr: Hierarchical integrate generative model (Diffusion Model) and regression-based model (Transformer) for realistic image deblurring
Diffusion models (DMs) have recently been introduced in image deblurring and exhibited promising performance, particularly in terms of details reconstruction. However, the diffusion model requires a large number of inference iterations to recover the clean image from pure Gaussian noise, which consumes massive computational resources. Moreover, the distribution synthesized by the diffusion model is often misaligned with the target results, leading to restrictions in distortion-based metrics. To address the above issues, we propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring. Specifically, we perform the DM in a highly compacted latent space to generate the prior feature for the deblurring process. The deblurring process is implemented by a regression-based method to obtain better distortion accuracy. Meanwhile, the highly compact latent space ensures the efficiency of the DM. Furthermore, we design the hierarchical integration module to fuse the prior into the regression-based model from multiple scales, enabling better generalization in complex blurry scenarios. Comprehensive experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods. Code and trained models are available at https://github.com/zhengchen1999/HI-Diff.
Jules Berman, Benjamin Peherstorfer
tl;dr: We propose Neural Galerkin schemes that update randomized sparse subsets of parameters. We are up to two orders of magnitude more accurate at a fixed budget and up to two orders of magnitude faster at a fixed accuracy than dense updates.
Training neural networks sequentially in time to approximate solution fields of time-dependent partial differential equations can be beneficial for preserving causality and other physics properties; however, the sequential-in-time training is numerically challenging because training errors quickly accumulate and amplify over time. This work introduces Neural Galerkin schemes that update randomized sparse subsets of network parameters at each time step. The randomization avoids overfitting locally in time and so helps prevent the error from accumulating quickly over the sequential-in-time training, which is motivated by dropout that addresses a similar issue of overfitting due to neuron co-adaptation. The sparsity of the update reduces the computational costs of training without losing expressiveness because many of the network parameters are redundant locally at each time step. In numerical experiments with a wide range of evolution equations, the proposed scheme with randomized sparse updates is up to two orders of magnitude more accurate at a fixed computational budget and up to two orders of magnitude faster at a fixed accuracy than schemes with dense updates.
Kexin Huang, Ying Jin, Emmanuel Candes, Jure Leskovec
tl;dr: We study the theoretical condition for conformal validity in graph-structured data to produce guaranteed uncertainty estimates and design a topology-aware method to reduce inefficiency by up to 74%.
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data. However, GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant. We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates. Given an entity in the graph, CF-GNN produces a prediction set/interval that provably contains the true label with pre-defined coverage probability (e.g. 90%). We establish a permutation invariance condition that enables the validity of CP on graph data and provide an exact characterization of the test-time coverage. Moreover, besides valid coverage, it is crucial to reduce the prediction set size/interval length for practical use. We observe a key connection between non-conformity scores and network structures, which motivates us to develop a topology-aware output correction model that learns to update the prediction and produces more efficient prediction sets/intervals. Extensive experiments show that CF-GNN achieves any pre-defined target marginal coverage while significantly reducing the prediction set/interval size by up to 74% over the baselines. It also empirically achieves satisfactory conditional coverage over various raw and network features.
Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo
Regret Matching$^+$ (RM$^+$) and its variants are important algorithms for solving large-scale games. However, a theoretical understanding of their success in practice is still a mystery. Moreover, recent advances on fast convergence in games are limited to no-regret algorithms such as online mirror descent, which satisfy stability. In this paper, we first give counterexamples showing that RM+ and its predictive version can be unstable, which might cause other players to suffer large regret. We then provide two fixes: restarting and chopping off the positive orthant that RM$^+$ works in. We show that these fixes are sufficient to get $O(T^{1/4})$ individual regret and $O(1)$ social regret in normal-form games via RM$^+$ with predictions. We also apply our stabilizing techniques to clairvoyant updates in the uncoupled learning setting for RM$^+$ and prove desirable results akin to recent works for Clairvoyant online mirror descent. Our experiments show the advantages of our algorithms over vanilla RM$^+$-based algorithms in matrix and extensive-form games.
Drago Plecko, Elias Bareinboim
tl;dr: We introduce a novel set of tools that allow for decomposition of spurious (confounded) variations between variables $X$ and $Y$ in general Semi-Markovian models.
One of the fundamental challenges found throughout the data sciences is to explain why things happen in specific ways, or through which mechanisms a certain variable $X$ exerts influences over another variable $Y$. In statistics and machine learning, significant efforts have been put into developing machinery to estimate correlations across variables efficiently. In causal inference, a large body of literature is concerned with the decomposition of causal effects under the rubric of mediation analysis. However, many variations are spurious in nature, including different phenomena throughout the applied sciences. Despite the statistical power to estimate correlations and the identification power to decompose causal effects, there is still little understanding of the properties of spurious associations and how they can be decomposed in terms of the underlying causal mechanisms. In this manuscript, we develop formal tools for decomposing spurious variations in both Markovian and Semi-Markovian models. We prove the first results that allow a non-parametric decomposition of spurious effects and provide sufficient conditions for the identification of such decompositions. The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine, and we empirically demonstrate its use on a real-world dataset.
Chaofei Fan, Nick Hahn, Foram Kamdar, Donald Avansino, Guy H Wilson, Leigh Hochberg, Krishna V. Shenoy, Jaimie M. Henderson, Francis R Willett
Intracortical brain-computer interfaces (iBCIs) have shown promise for restoring rapid communication to people with neurological disorders such as amyotrophic lateral sclerosis (ALS). However, to maintain high performance over time, iBCIs typically need frequent recalibration to combat changes in the neural recordings that accrue over days. This requires iBCI users to stop using the iBCI and engage in supervised data collection, making the iBCI system hard to use. In this paper, we propose a method that enables self-recalibration of communication iBCIs without interrupting the user. Our method leverages large language models (LMs) to automatically correct errors in iBCI outputs. The self-recalibration process uses these corrected outputs ("pseudo-labels") to continually update the iBCI decoder online. Over a period of more than one year (403 days), we evaluated our Continual Online Recalibration with Pseudo-labels (CORP) framework with one clinical trial participant. CORP achieved a stable decoding accuracy of 93.84% in an online handwriting iBCI task, significantly outperforming other baseline methods. Notably, this is the longest-running iBCI stability demonstration involving a human participant. Our results provide the first evidence for long-term stabilization of a plug-and-play, high-performance communication iBCI, addressing a major barrier for the clinical translation of iBCIs.
Elie Bursztein, Marina Zhang, Owen Skipper Vallis, Xinyu Jia, Alexey Kurakin
tl;dr: RETVec is a new multilingual, typo-resilient text vectorizer which achieves state-of-the-art performance on various benchmarks
This paper describes RETVec, an efficient, resilient, and multilingual text vectorizer designed for neural-based text processing. RETVec combines a novel character encoding with an optional small embedding model to embed words into a 256-dimensional vector space. The RETVec embedding model is pre-trained using pair-wise metric learning to be robust against typos and character-level adversarial attacks. In this paper, we evaluate and compare RETVec to state-of-the-art vectorizers and word embeddings on popular model architectures and datasets. These comparisons demonstrate that RETVec leads to competitive, multilingual models that are significantly more resilient to typos and adversarial text attacks. RETVec is available under the Apache 2 license at https://github.com/google-research/retvec.
Anshuk Uppal, Kristoffer Stensbo-Smidt, Wouter Boomsma, Jes Frellsen
tl;dr: High dimensional expressive variational approximations that perform better than existing methods.
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution. We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors in high-dimensional spaces. Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler. This is distinct from existing methods that rely on additional discriminator networks and unstable adversarial objectives. Furthermore, we present a new sampler architecture that, for the first time, enables implicit distributions over tens of millions of latent variables, addressing computational concerns by using differentiable numerical approximations. We empirically show that our method is capable of recovering correlations across layers in large Bayesian neural networks, a property that is crucial for a network's performance but notoriously challenging to achieve. To the best of our knowledge, no other method has been shown to accomplish this task for such large models. Through experiments in downstream tasks, we demonstrate that our expressive posteriors outperform state-of-the-art uncertainty quantification methods, validating the effectiveness of our training algorithm and the quality of the learned implicit approximation.
Xingyu Jiang, Jiayi Ma
tl;dr: Dual Sparsity Pursuit
In this paper, we contribute to solving a threefold problem: outlier rejection, true model reasoning and parameter estimation with a unified optimization modeling. To this end, we first pose this task as a sparse subspace recovering problem, to search a maximum of independent bases under an over-embedded data space. Then we convert the objective into a continuous optimization paradigm that estimates sparse solutions for both bases and errors. Wherein a fast and robust solver is proposed to accurately estimate the sparse subspace parameters and error entries, which is implemented by a proximal approximation method under the alternating optimization framework with the ``optimal'' sub-gradient descent. Extensive experiments regarding known and unknown model fitting on synthetic and challenging real datasets have demonstrated the superiority of our method against the state-of-the-art. We also apply our method to multi-class multi-model fitting and loop closure detection, and achieve promising results both in accuracy and efficiency. Code is released at: https://github.com/StaRainJ/DSP.
Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf Wiest, Xiangliang Zhang
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper, rather than pursuing state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain. We identify three key chemistry-related capabilities including understanding, reasoning and explaining to explore in LLMs and establish a benchmark containing eight chemistry tasks. Our analysis draws on widely recognized datasets facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4,GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. Our investigation found that GPT-4 outperformed other models and LLMs exhibit different competitive levels in eight chemistry tasks. In addition to the key findings from the comprehensive benchmark analysis, our work provides insights into the limitation of current LLMs and the impact of in-context learning settings on LLMs’ performance across various chemistry tasks. The code and datasets used in this study are available at https://github.com/ChemFoundationModels/ChemLLMBench.
Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, Ding Zhao
Safe reinforcement learning (RL) focuses on training reward-maximizing agents subject to pre-defined safety constraints. Yet, learning versatile safe policies that can adapt to varying safety constraint requirements during deployment without retraining remains a largely unexplored and challenging area. In this work, we formulate the versatile safe RL problem and consider two primary requirements: training efficiency and zero-shot adaptation capability. To address them, we introduce the Conditioned Constrained Policy Optimization (CCPO) framework, consisting of two key modules: (1) Versatile Value Estimation (VVE) for approximating value functions under unseen threshold conditions, and (2) Conditioned Variational Inference (CVI) for encoding arbitrary constraint thresholds during policy optimization. Our extensive experiments demonstrate that CCPO outperforms the baselines in terms of safety and task performance while preserving zero-shot adaptation capabilities to different constraint thresholds data-efficiently. This makes our approach suitable for real-world dynamic applications.
Woojin Cho, Kookjin Lee, Donsub Rim, Noseong Park
In various engineering and applied science applications, repetitive numerical simulations of partial differential equations (PDEs) for varying input parameters are often required (e.g., aircraft shape optimization over many design parameters) and solvers are required to perform rapid execution. In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs), emerging deep-learning-based solvers, to be considered as one such solver. Although PINNs have pioneered a proper integration of deep-learning and scientific computing, they require repetitive time-consuming training of neural networks, which is not suitable for many-query scenarios. To address this issue, we propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm, which allows efficient approximation of solutions of PDEs for varying ranges of PDE input parameters. Moreover, we show that the proposed method is effective in overcoming a challenging issue, known as "failure modes" of PINNs.
Mark Mazumder, Colby Banbury, Xiaozhe Yao, Bojan Karlaš, William A Gaviria Rojas, Sudnya Diamos, Greg Diamos, Lynn He, Alicia Parrish, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Douwe Kiela, David Jurado, David Kanter, Rafael Mosquera, Will Cukierski, Juan Ciro, Lora Aroyo, Bilge Acun, Lingjiao Chen, Mehul Smriti Raje, Max Bartolo, Sabri Eyuboglu, Amirata Ghorbani, Emmett Daniel Goodman, Addison Howard, Oana Inel, Tariq Kane, Christine Kirkpatrick, D. Sculley, Tzu-Sheng Kuo, Jonas Mueller, Tristan Thrush, Joaquin Vanschoren, Margaret Warren, Adina Williams, Serena Yeung, Newsha Ardalani, Praveen Paritosh, Ce Zhang, James Y. Zou, Carole-Jean Wu, Cody Coleman, Andrew Ng, Peter Mattson, Vijay Janapa Reddi
tl;dr: DataPerf is an open-source, extensible benchmark suite for data-centric AI
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.
Xiaohan Lin, Liyuan Li, Boxin Shi, Tiejun Huang, Yuanyuan Mi, Si Wu
tl;dr: Continuous attractor network dynamics and excitation-inhibition balanced dynamics can coexist in one circuit with synergistic computation benefits.
Attractor networks require neuronal connections to be highly structured in order to maintain attractor states that represent information, while excitation and inhibition balanced networks (E-INNs) require neuronal connections to be random and sparse to generate irregular neuronal firings. Despite being regarded as canonical models of neural circuits, both types of networks are usually studied in isolation, and it remains unclear how they coexist in the brain, given their very different structural demands. In this study, we investigate the compatibility of continuous attractor neural networks (CANNs) and E-INNs. In line with recent experimental data, we find that a neural circuit can exhibit both the traits of CANNs and E-INNs if the neuronal synapses consist of two sets: one set is strong and fast for irregular firing, and the other set is weak and slow for attractor dynamics. Our results from simulations and theoretical analysis reveal that the network also exhibits enhanced performance compared to the case of using only one set of synapses, with accelerated convergence of attractor states and retained E-I balanced condition for localized input. We also apply the network model to solve a real-world tracking problem and demonstrate that it can track fast-moving objects well. We hope that this study provides insight into how structured neural computations are realized by irregular firings of neurons.
Fenja Falta, Christoph Großbröhmer, Alessa Hering, Alexander Bigalke, Mattias P Heinrich
A popular benchmark for intra-patient lung registration is provided by the DIR-LAB COPDgene dataset consisting of large-motion in- and expiratory breath-hold CT pairs. This dataset alone, however, does not provide enough samples to properly train state-of-the-art deep learning methods. Other public datasets often also provide only small sample sizes or include primarily small motions between scans that do not translate well to larger deformations. For point-based geometric registration, the PVT1010 dataset provides a large number of vessel point clouds without any correspondences and a labeled test set corresponding to the COPDgene cases. However, the absence of correspondences for supervision complicates training, and a fair comparison with image-based algorithms is infeasible, since CT scans for the training data are not publicly available. We here provide a combined benchmark for image- and point-based registration approaches. We curated a total of 248 public multi-centric in- and expiratory lung CT scans from 124 patients, which show large motion between scans, processed them to ensure sufficient homogeneity between the data and generated vessel point clouds that are well distributed even deeper inside the lungs. For supervised training, we provide vein and artery segmentations of the vessels and multiple thousand image-derived keypoint correspondences for each pair. For validation, we provide multiple scan pairs with manual landmark annotations. Finally, as first baselines on our new benchmark, we evaluate several image and point cloud registration methods on the dataset.
Artyom Gadetsky, Maria Brbic
tl;dr: We propose an unsupervised learning framework to find human labeling by searching for consistent labelings between different representation spaces.
We present HUME, a simple model-agnostic framework for inferring human labeling of a given dataset without any external supervision. The key insight behind our approach is that classes defined by many human labelings are linearly separable regardless of the representation space used to represent a dataset. HUME utilizes this insight to guide the search over all possible labelings of a dataset to discover an underlying human labeling. We show that the proposed optimization objective is strikingly well-correlated with the ground truth labeling of the dataset. In effect, we only train linear classifiers on top of pretrained representations that remain fixed during training, making our framework compatible with any large pretrained and self-supervised model. Despite its simplicity, HUME outperforms a supervised linear classifier on top of self-supervised representations on the STL-10 dataset by a large margin and achieves comparable performance on the CIFAR-10 dataset. Compared to the existing unsupervised baselines, HUME achieves state-of-the-art performance on four benchmark image classification datasets including the large-scale ImageNet-1000 dataset. Altogether, our work provides a fundamentally new view to tackle unsupervised learning by searching for consistent labelings between different representation spaces.
Joseph T Costello, Hisham Temmar, Luis H Cubillos, Matthew J Mender, Dylan M Wallace, Matthew S Willsey, Parag G Patil, Cynthia Chestek
tl;dr: Using an intracortical brain-machine interface, we show how RNNs outperform other neural networks for closed-loop neural decoding, and can act both like a classifier and a continuous decoder for decoding movement.
Brain-machine interfaces (BMIs) can restore motor function to people with paralysis but are currently limited by the accuracy of real-time decoding algorithms. Recurrent neural networks (RNNs) using modern training techniques have shown promise in accurately predicting movements from neural signals but have yet to be rigorously evaluated against other decoding algorithms in a closed-loop setting. Here we compared RNNs to other neural network architectures in real-time, continuous decoding of finger movements using intracortical signals from nonhuman primates. Across one and two finger online tasks, LSTMs (a type of RNN) outperformed convolutional and transformer-based neural networks, averaging 18% higher throughput than the convolution network. On simplified tasks with a reduced movement set, RNN decoders were allowed to memorize movement patterns and matched able-bodied control. Performance gradually dropped as the number of distinct movements increased but did not go below fully continuous decoder performance. Finally, in a two-finger task where one degree-of-freedom had poor input signals, we recovered functional control using RNNs trained to act both like a movement classifier and continuous decoder. Our results suggest that RNNs can enable functional real-time BMI control by learning and generating accurate movement patterns.
Junfeng Fang, Wei Liu, Yuan Gao, Zemin Liu, An Zhang, Xiang Wang, Xiangnan He
tl;dr: This work draws inspiration from the notion of adversarial robustness and introduces a novel evaluation metric, termed OOD-resistant Adversarial Robustness (OAR).
This work studies the evaluation of explaining graph neural networks (GNNs), which is crucial to the credibility of post-hoc explainability in practical usage. Conventional evaluation metrics, and even explanation methods -- which mainly follow the paradigm of feeding the explanatory subgraph and measuring output difference -- always suffer from the notorious out-of-distribution (OOD) issue. In this work, we endeavor to confront the issue by introducing a novel evaluation metric, termed **O**OD-resistant **A**dversarial **R**obustness (OAR). Specifically, we draw inspiration from the notion of adversarial robustness and evaluate post-hoc explanation subgraphs by calculating their robustness under attack. On top of that, an elaborate OOD reweighting block is inserted into the pipeline to confine the evaluation process to the original data distribution. For applications involving large datasets, we further devise a **Sim**plified version of **OAR** (SimOAR), which achieves a significant improvement in computational efficiency at the cost of a small amount of performance. Extensive empirical studies validate the effectiveness of our OAR and SimOAR.
William Brown, Jon Schneider, Kiran Vodrahalli
tl;dr: Tradeoffs between reward and regret for learning in 2-player games: deviating to higher regret is often better for reward
We consider a number of questions related to tradeoffs between reward and regret in repeated gameplay between two agents. To facilitate this, we introduce a notion of generalized equilibrium which allows for asymmetric regret constraints, and yields polytopes of feasible values for each agent and pair of regret constraints, where we show that any such equilibrium is reachable by a pair of algorithms which maintain their regret guarantees against arbitrary opponents. As a central example, we highlight the case one agent is no-swap and the other's regret is unconstrained. We show that this captures an extension of Stackelberg equilibria with a matching optimal value, and that there exists a wide class of games where a player can significantly increase their utility by deviating from a no-swap-regret algorithm against a no-swap learner (in fact, almost any game without pure Nash equilibria is of this form). Additionally, we make use of generalized equilibria to consider tradeoffs in terms of the opponent's algorithm choice. We give a tight characterization for the maximal reward obtainable against some no-regret learner, yet we also show a class of games in which this is bounded away from the value obtainable against the class of common "mean-based" no-regret algorithms. Finally, we consider the question of learning reward-optimal strategies via repeated play with a no-regret agent when the game is initially unknown. Again we show tradeoffs depending on the opponent's learning algorithm: the Stackelberg strategy is learnable in exponential time with any no-regret agent (and in polynomial time with any no-adaptive-regret agent) for any game where it is learnable via queries, and there are games where it is learnable in polynomial time against any no-swap-regret agent but requires exponential time against a mean-based no-regret agent.
Tianyu Xie, Cheng Zhang
tl;dr: A novel deep autoregressive model for phylogenetic inference
Designing flexible probabilistic models over tree topologies is important for developing efficient phylogenetic inference methods. To do that, previous works often leverage the similarity of tree topologies via hand-engineered heuristic features which would require domain expertise and may suffer from limited approximation capability. In this paper, we propose a deep autoregressive model for phylogenetic inference based on graph neural networks (GNNs), called ARTree. By decomposing a tree topology into a sequence of leaf node addition operations and modeling the involved conditional distributions based on learnable topological features via GNNs, ARTree can provide a rich family of distributions over tree topologies that have simple sampling algorithms, without using heuristic features. We demonstrate the effectiveness and efficiency of our method on a benchmark of challenging real data tree topology density estimation and variational Bayesian phylogenetic inference problems.
Qiuyu Wang, Zifan Shi, Kecheng Zheng, Yinghao Xu, Sida Peng, Yujun Shen
Despite the rapid advance of 3D-aware image synthesis, existing studies usually adopt a mixture of techniques and tricks, leaving it unclear how each part contributes to the final performance in terms of generality. Following the most popular and effective paradigm in this field, which incorporates a neural radiance field (NeRF) into the generator of a generative adversarial network (GAN), we build a well-structured codebase through modularizing the generation process. Such a design allows researchers to develop and replace each module independently, and hence offers an opportunity to fairly compare various approaches and recognize their contributions from the module perspective. The reproduction of a range of cutting-edge algorithms demonstrates the availability of our modularized codebase. We also perform a variety of in-depth analyses, such as the comparison across different types of point feature, the necessity of the tailing upsampler in the generator, the reliance on the camera pose prior, etc., which deepen our understanding of existing methods and point out some further directions of the research work. Code and models will be made publicly available to facilitate the development and evaluation of this field.
Zixing Song, Yifei Zhang, Irwin King
Graph Neural Networks (GNNs) are crucial for machine learning applications with graph-structured data, but their success depends on sufficient labeled data. We present a novel active learning (AL) method for GNNs, extending the Expected Model Change Maximization (EMCM) principle to improve prediction performance on unlabeled data. By presenting a Bayesian interpretation for the node embeddings generated by GNNs under the semi-supervised setting, we efficiently compute the closed-form EMCM acquisition function as the selection criterion for AL without re-training. Our method establishes a direct connection with expected prediction error minimization, offering theoretical guarantees for AL performance. Experiments demonstrate our method's effectiveness compared to existing approaches, in terms of both accuracy and efficiency.
Hao Zheng, Regina Lee, Yuqian Lu
Understanding comprehensive assembly knowledge from videos is critical for futuristic ultra-intelligent industry. To enable technological breakthrough, we present HA-ViD – the first human assembly video dataset that features representative industrial assembly scenarios, natural procedural knowledge acquisition process, and consistent human-robot shared annotations. Specifically, HA-ViD captures diverse collaboration patterns of real-world assembly, natural human behaviors and learning progression during assembly, and granulate action annotations to subject, action verb, manipulated object, target object, and tool. We provide 3222 multi-view and multi-modality videos), 1.5M frames, 96K temporal labels and 2M spatial labels. We benchmark four foundational video understanding tasks: action recognition, action segmentation, object detection and multi-object tracking. Importantly, we analyze their performance and the further reasoning steps for comprehending knowledge in assembly progress, process efficiency, task collaboration, skill parameters and human intention. Details of HA-ViD is available at: https://iai-hrc.github.io/ha-vid.
Florian Felten, Lucas Nunes Alegre, Ann Nowe, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy, Bruno Castro da Silva
tl;dr: We introduce a toolkit for reproducible research in Multi-Objective RL: (i) a set of environments under a standardized API; (ii) a set of algorithms implementations compatible with our API; and (iii) a benchmark of the implemented algorithms.
Multi-objective reinforcement learning algorithms (MORL) extend standard reinforcement learning (RL) to scenarios where agents must optimize multiple---potentially conflicting---objectives, each represented by a distinct reward function. To facilitate and accelerate research and benchmarking in multi-objective RL problems, we introduce a comprehensive collection of software libraries that includes: (i) MO-Gymnasium, an easy-to-use and flexible API enabling the rapid construction of novel MORL environments. It also includes more than 20 environments under this API. This allows researchers to effortlessly evaluate any algorithms on any existing domains; (ii) MORL-Baselines, a collection of reliable and efficient implementations of state-of-the-art MORL algorithms, designed to provide a solid foundation for advancing research. Notably, all algorithms are inherently compatible with MO-Gymnasium; and (iii) a thorough and robust set of benchmark results and comparisons of MORL-Baselines algorithms, tested across various challenging MO-Gymnasium environments. These benchmarks were constructed to serve as guidelines for the research community, underscoring the properties, advantages, and limitations of each particular state-of-the-art method.
Edith Cohen, Xin Lyu
tl;dr: We propose a privacy analysis method that significantly generalizes the applicability of the Sparse Vector Technique (SVT)
We propose the \emph{Target Charging Technique} (TCT), a unified privacy analysis framework for interactive settings where a sensitive dataset is accessed multiple times using differentially private algorithms. Unlike traditional composition, where privacy guarantees deteriorate quickly with the number of accesses, TCT allows computations that don't hit a specified \emph{target}, often the vast majority, to be essentially free (while incurring instead a small overhead on those that do hit their targets). TCT generalizes tools such as the sparse vector technique and top-k selection from private candidates and extends their remarkable privacy enhancement benefits from noisy Lipschitz functions to general private algorithms.
Shenghuan Sun, Gregory Goldgof, Atul Butte, Ahmed Alaa
Generative models capable of precisely capturing nuanced clinical features in medical images hold great promise for facilitating clinical data sharing, enhancing rare disease datasets, and efficiently synthesizing (annotated) medical images at scale. Despite their potential, assessing the quality of synthetic medical images remains a challenge. While modern generative models can synthesize visually-realistic medical images, the clinical plausibility of these images may be called into question. Domain-agnostic scores, such as FID score, precision, and recall, cannot incorporate clinical knowledge and are, therefore, not suitable for assessing clinical sensibility. Additionally, there are numerous unpredictable ways in which generative models may fail to synthesize clinically plausible images, making it challenging to anticipate potential failures and design automated scores for their detection. To address these challenges, this paper introduces a pathologist-in-the-loop framework for generating clinically-plausible synthetic medical images. Our framework comprises three steps: (1) pretraining a conditional diffusion model to generate medical images conditioned on a clinical concept, (2) expert pathologist evaluation of the generated images to assess whether they satisfy clinical desiderata, and (3) training a reward model that predicts human feedback on new samples, which we use to incorporate expert knowledge into the finetuning objective of the diffusion model. Our results show that human feedback significantly improves the quality of synthetic images in terms of fidelity, diversity, utility in downstream applications, and plausibility as evaluated by experts. We also demonstrate that human feedback can teach the model new clinical concepts not annotated in the original training data. Our results demonstrate the value of incorporating human feedback in clinical applications where generative models may struggle to capture extensive domain knowledge from raw data alone.
Mengyue Yang, Yonggang Zhang, Zhen Fang, Yali Du, Furui Liu, Jean-Francois Ton, Jianhong Wang, Jun Wang
Out-of-distribution (OOD) generalization is indispensable for learning models in the wild, where testing distribution typically unknown and different from the training. Recent methods derived from causality have shown great potential in achieving OOD generalization. However, existing methods mainly focus on the invariance property of causes, while largely overlooking the property of sufficiency and necessity conditions. Namely, a necessary but insufficient cause (feature) is invariant to distribution shift, yet it may not have required accuracy. By contrast, a sufficient yet unnecessary cause (feature) tends to fit specific data well but may have a risk of adapting to a new domain. To capture the information of sufficient and necessary causes, we employ a classical concept, the probability of sufficiency and necessary causes (PNS), which indicates the probability of whether one is the necessary and sufficient cause. To associate PNS with OOD generalization, we propose PNS risk and formulate an algorithm to learn representation with a high PNS value. We theoretically analyze and prove the generalizability of the PNS risk. Experiments on both synthetic and real-world benchmarks demonstrate the effectiveness of the proposed method. The detailed implementation can be found at the GitHub repository: https://github.com/ymy4323460/CaSN.
Tomas Vaskevicius, Lénaïc Chizat
tl;dr: We provide computational guarantees for computing doubly regularized entropic Wasserstein barycenters.
We study the computation of doubly regularized Wasserstein barycenters, a recently introduced family of entropic barycenters governed by inner and outer regularization strengths. Previous research has demonstrated that various regularization parameter choices unify several notions of entropy-penalized barycenters while also revealing new ones, including a special case of debiased barycenters. In this paper, we propose and analyze an algorithm for computing doubly regularized Wasserstein barycenters. Our procedure builds on damped Sinkhorn iterations followed by exact maximization/minimization steps and guarantees convergence for any choice of regularization parameters. An inexact variant of our algorithm, implementable using approximate Monte Carlo sampling, offers the first non-asymptotic convergence guarantees for approximating Wasserstein barycenters between discrete point clouds in the free-support/grid-free setting.
Zhou Lu
Human perception of the empirical world involves recognizing the diverse appearances, or 'modalities', of underlying objects. Despite the longstanding consideration of this perspective in philosophy and cognitive science, the study of multimodality remains relatively under-explored within the field of machine learning. Nevertheless, current studies of multimodal machine learning are limited to empirical practices, lacking theoretical foundations beyond heuristic arguments. An intriguing finding from the practice of multimodal learning is that a model trained on multiple modalities can outperform a finely-tuned unimodal model, even on unimodal tasks. This paper provides a theoretical framework that explains this phenomenon, by studying generalization properties of multimodal learning algorithms. We demonstrate that multimodal learning allows for a superior generalization bound compared to unimodal learning, up to a factor of $O(\sqrt{n})$, where $n$ represents the sample size. Such advantage occurs when both connection and heterogeneity exist between the modalities.
Haotong Qin, Yulun Zhang, Yifu Ding, Yifan liu, Xianglong Liu, Martin Danelljan, Fisher Yu
tl;dr: We propose a novel quantized image SR network, called QuantSR, which achieves accurate and efficient SR processing under low-bit quantization.
Low-bit quantization in image super-resolution (SR) has attracted copious attention in recent research due to its ability to reduce parameters and operations significantly. However, many quantized SR models suffer from accuracy degradation compared to their full-precision counterparts, especially at ultra-low bit widths (2-4 bits), limiting their practical applications. To address this issue, we propose a novel quantized image SR network, called QuantSR, which achieves accurate and efficient SR processing under low-bit quantization. To overcome the representation homogeneity caused by quantization in the network, we introduce the Redistribution-driven Learnable Quantizer (RLQ). This is accomplished through an inference-agnostic efficient redistribution design, which adds additional information in both forward and backward passes to improve the representation ability of quantized networks. Furthermore, to achieve flexible inference and break the upper limit of accuracy, we propose the Depth-dynamic Quantized Architecture (DQA). Our DQA allows for the trade-off between efficiency and accuracy during inference through weight sharing. Our comprehensive experiments show that QuantSR outperforms existing state-of-the-art quantized SR networks in terms of accuracy while also providing more competitive computational efficiency. In addition, we demonstrate the scheme's satisfactory architecture generality by providing QuantSR-C and QuantSR-T for both convolution and Transformer versions, respectively. Our code and models are released at https://github.com/htqin/QuantSR .
Nicholas Franzese, Adam Dziedzic, Christopher A. Choquette-Choo, Mark R. Thomas, Muhammad Ahmad Kaleem, Stephan Rabanser, Congyu Fang, Somesh Jha, Nicolas Papernot, Xiao Wang
tl;dr: We propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients.
Collaborative machine learning (ML) is widely used to enable institutions to learn better models from distributed data. While collaborative approaches to learning intuitively protect user data, they remain vulnerable to either the server, the clients, or both, deviating from the protocol. Indeed, because the protocol is asymmetric, a malicious server can abuse its power to reconstruct client data points. Conversely, malicious clients can corrupt learning with malicious updates. Thus, both clients and servers require a guarantee when the other cannot be trusted to fully cooperate. In this work, we propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients. Our core contribution is a generic framework that transforms any (compatible) algorithm for robust aggregation of model updates to the setting where servers and clients can act maliciously. Finally, we demonstrate the computational efficiency of our approach even with 1-million parameter models trained by 100s of peers on standard datasets.
Guanghui Wang, Zihao Hu, Vidya Muthukumar, Jacob Abernethy
tl;dr: We provide a series of state-of-the-art implicit bias rates for generic optimization algorithms.
First-order optimization methods tend to inherently favor certain solutions over others when minimizing a given training objective with multiple local optima. This phenomenon, known as \emph{implicit bias}, plays a critical role in understanding the generalization capabilities of optimization algorithms. Recent research has revealed that gradient-descent-based methods exhibit an implicit bias for the $\ell_2$-maximal margin classifier in the context of separable binary classification. In contrast, generic optimization methods, such as mirror descent and steepest descent, have been shown to converge to maximal margin classifiers defined by alternative geometries. However, while gradient-descent-based algorithms demonstrate fast implicit bias rates, the implicit bias rates of generic optimization methods have been relatively slow. To address this limitation, in this paper, we present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms. Our primary technique involves transforming a generic optimization algorithm into an online learning dynamic that solves a regularized bilinear game, providing a unified framework for analyzing the implicit bias of various optimization methods. The accelerated rates are derived leveraging the regret bounds of online learning algorithms within this game framework.
Ivana Balazevic, David Steiner, Nikhil Parthasarathy, Relja Arandjelovic, Olivier J Henaff
tl;dr: Retrieval-augmented self-supervised models display fast and data-efficient adaptation to a range of scene understanding tasks.
In-context learning––the ability to configure a model's behavior with different prompts––has revolutionized the field of natural language processing, alleviating the need for task-specific models and paving the way for generalist models capable of assisting with any query. Computer vision, in contrast, has largely stayed in the former regime: specialized decoders and finetuning protocols are generally required to perform dense tasks such as semantic segmentation and depth estimation. In this work we explore a simple mechanism for in-context learning of such scene understanding tasks: nearest neighbor retrieval from a prompt of annotated features. We propose a new pretraining protocol––leveraging attention within and across images––which yields representations particularly useful in this regime. The resulting Hummingbird model, suitably prompted, performs various scene understanding tasks without modification while approaching the performance of specialists that have been finetuned for each task. Moreover, Hummingbird can be configured to perform new tasks much more efficiently than finetuned models, raising the possibility of scene understanding in the interactive assistant regime.
Zitang Sun, Yen-Ju Chen, Yung-Hao Yang, Shin'ya Nishida
tl;dr: A two-stage approach that combines trainable motion energy sensing with a recurrent self-attention network for motion integration is proposed to bridge the gap between human and computer vision models of visual motion perception.
Visual motion processing is essential for humans to perceive and interact with dynamic environments. Despite extensive research in cognitive neuroscience, image-computable models that can extract informative motion flow from natural scenes in a manner consistent with human visual processing have yet to be established. Meanwhile, recent advancements in computer vision (CV), propelled by deep learning, have led to significant progress in optical flow estimation, a task closely related to motion perception. Here we propose an image-computable model of human motion perception by bridging the gap between biological and CV models. Specifically, we introduce a novel two-stages approach that combines trainable motion energy sensing with a recurrent self-attention network for adaptive motion integration and segregation. This model architecture aims to capture the computations in V1-MT, the core structure for motion perception in the biological visual system, while providing the ability to derive informative motion flow for a wide range of stimuli, including complex natural scenes. In silico neurophysiology reveals that our model's unit responses are similar to mammalian neural recordings regarding motion pooling and speed tuning. The proposed model can also replicate human responses to a range of stimuli examined in past psychophysical studies. The experimental results on the Sintel benchmark demonstrate that our model predicts human responses better than the ground truth, whereas the state-of-the-art CV models show the opposite. Our study provides a computational architecture consistent with human visual motion processing, although the physiological correspondence may not be exact.
Siobhan Mackenzie Hall, Fernanda Gonçalves Abrantes, Hanwen Zhu, Grace Sodunke, Aleksandar Shtedritski, Hannah Rose Kirk
We introduce VisoGender, a novel dataset for benchmarking gender bias in vision-language models. We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas, where each image is associated with a caption containing a pronoun relationship of subjects and objects in the scene. VisoGender is balanced by gender representation in professional roles, supporting bias evaluation in two ways: i) resolution bias, where we evaluate the difference between pronoun resolution accuracies for image subjects with gender presentations perceived as masculine versus feminine by human annotators and ii) retrieval bias, where we compare ratios of professionals perceived to have masculine and feminine gender presentations retrieved for a gender-neutral search query. We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes. While the direction and magnitude of gender bias depends on the task and the model being evaluated, captioning models are generally less biased than Vision-Language Encoders.
Zhen Zhang, Bingqiao Luo, Shengliang Lu, Bingsheng He
tl;dr: In this paper, we introduce the concept of Live Graph Lab for temporal graphs, which enables open, dynamic and real transaction graphs from blockchains
Numerous studies have been conducted to investigate the properties of large-scale temporal graphs. Despite the ubiquity of these graphs in real-world scenarios, it's usually impractical for us to obtain the whole real-time graphs due to privacy concerns and technical limitations. In this paper, we introduce the concept of {\it Live Graph Lab} for temporal graphs, which enables open, dynamic and real transaction graphs from blockchains. Among them, Non-fungible tokens (NFTs) have become one of the most prominent parts of blockchain over the past several years. With more than \$40 billion market capitalization, this decentralized ecosystem produces massive, anonymous and real transaction activities, which naturally forms a complicated transaction network. However, there is limited understanding about the characteristics of this emerging NFT ecosystem from a temporal graph analysis perspective. To mitigate this gap, we instantiate a live graph with NFT transaction network and investigate its dynamics to provide new observations and insights. Specifically, through downloading and parsing the NFT transaction activities, we obtain a temporal graph with more than 4.5 million nodes and 124 million edges. Then, a series of measurements are presented to understand the properties of the NFT ecosystem. Through comparisons with social, citation, and web networks, our analyses give intriguing findings and point out potential directions for future exploration. Finally, we also study machine learning models in this live graph to enrich the current datasets and provide new opportunities for the graph community. The source codes and dataset are available at https://livegraphlab.github.io.
Allen Nie, Yuhui Zhang, Atharva Amdekar, Christopher J Piech, Tatsunori Hashimoto, Tobias Gerstenberg
tl;dr: We summarized the main findings of 24 cognitive science papers around human intuitions on causal and moral judgments, and collect a dataset to evaluate large language models.
Human commonsense understanding of the physical and social world is organized around intuitive theories. These theories support making causal and moral judgments. When something bad happens, we naturally ask: who did what, and why? A rich literature in cognitive science has studied people's causal and moral intuitions. This work has revealed a number of factors that systematically influence people's judgments, such as the violation of norms and whether the harm is avoidable or inevitable. We collected a dataset of stories from 24 cognitive science papers and developed a system to annotate each story with the factors they investigated. Using this dataset, we test whether large language models (LLMs) make causal and moral judgments about text-based scenarios that align with those of human participants. On the aggregate level, alignment has improved with more recent LLMs. However, using statistical analyses, we find that LLMs weigh the different factors quite differently from human participants. These results show how curated, challenge datasets combined with insights from cognitive science can help us go beyond comparisons based merely on aggregate metrics: we uncover LLMs implicit tendencies and show to what extent these align with human intuitions.
Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, Michael W. Mahoney
Ensembling has a long history in statistical data analysis, with many impactful applications. However, in many modern machine learning settings, the benefits of ensembling are less ubiquitous and less obvious. We study, both theoretically and empirically, the fundamental question of when ensembling yields significant performance improvements in classification tasks. Theoretically, we prove new results relating the \emph{ensemble improvement rate} (a measure of how much ensembling decreases the error rate versus a single model, on a relative scale) to the \emph{disagreement-error ratio}. We show that ensembling improves performance significantly whenever the disagreement rate is large relative to the average error rate; and that, conversely, one classifier is often enough whenever the disagreement rate is low relative to the average error rate. On the way to proving these results, we derive, under a mild condition called \emph{competence}, improved upper and lower bounds on the average test error rate of the majority vote classifier. To complement this theory, we study ensembling empirically in a variety of settings, verifying the predictions made by our theory, and identifying practical scenarios where ensembling does and does not result in large performance improvements. Perhaps most notably, we demonstrate a distinct difference in behavior between interpolating models (popular in current practice) and non-interpolating models (such as tree-based methods, where ensembling is popular), demonstrating that ensembling helps considerably more in the latter case than in the former.
Zihao Hu, Guanghui Wang, Jacob Abernethy
tl;dr: We study projection-free online optimization on Riemannian manifolds and get several sublinear regret guarantees.
The projection operation is a critical component in a wide range of optimization algorithms, such as online gradient descent (OGD), for enforcing constraints and achieving optimal regret bounds. However, it suffers from computational complexity limitations in high-dimensional settings or when dealing with ill-conditioned constraint sets. Projection-free algorithms address this issue by replacing the projection oracle with more efficient optimization subroutines. But to date, these methods have been developed primarily in the Euclidean setting, and while there has been growing interest in optimization on Riemannian manifolds, there has been essentially no work in trying to utilize projection-free tools here. An apparent issue is that non-trivial affine functions are generally non-convex in such domains. In this paper, we present methods for obtaining sub-linear regret guarantees in online geodesically convex optimization on curved spaces for two scenarios: when we have access to (a) a separation oracle or (b) a linear optimization oracle. For geodesically convex losses, and when a separation oracle is available, our algorithms achieve $O(T^{\frac{1}{2}})$, $O(T^{\frac{3}{4}})$ and $O(T^{\frac{1}{2}})$ adaptive regret guarantees in the full information setting, the bandit setting with one-point feedback and the bandit setting with two-point feedback, respectively. When a linear optimization oracle is available, we obtain regret rates of $O(T^{\frac{3}{4}})$ for geodesically convex losses and $O(T^{\frac{2}{3}}\log T)$ for strongly geodesically convex losses.
Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari
tl;dr: We improve sampling speed of diffusion models by 2-4x using parallel computation
Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 14.6s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
Zachary Charles, Nicole Elyse Mitchell, Krishna Pillutla, Michael Reneer, Zachary Garrett
tl;dr: We introduce a library for creating large-scale datasets with group-level structure, and use this to simulate federated learning at foundation model scales.
We introduce Dataset Grouper, a library to create large-scale group-structured (e.g., federated) datasets, enabling federated learning simulation at the scale of foundation models. This library facilitates the creation of group-structured versions of existing datasets based on user-specified partitions, and directly leads to a variety of useful heterogeneous datasets that can be plugged into existing software frameworks. Dataset Grouper offers three key advantages. First, it scales to settings where even a single group's dataset is too large to fit in memory. Second, it provides flexibility, both in choosing the base (non-partitioned) dataset and in defining partitions. Finally, it is framework-agnostic. We empirically demonstrate that Dataset Grouper enables large-scale federated language modeling simulations on datasets that are orders of magnitude larger than in previous work, allowing for federated training of language models with hundreds of millions, and even billions, of parameters. Our experimental results show that algorithms like FedAvg operate more as meta-learning methods than as empirical risk minimization methods at this scale, suggesting their utility in downstream personalization and task-specific adaptation. Dataset Grouper is available at https://github.com/google-research/dataset_grouper.
Hannah Dröge, Zorah Lähner, Yuval Bahat, Onofre Martorell Nadal, Felix Heide, Michael Moeller
tl;dr: We propose an efficient representation for permutation matrices that is well-suited for optimization in learning frameworks.
Permutation matrices play a key role in matching and assignment problems across the fields, especially in computer vision and robotics. However, memory for explicitly representing permutation matrices grows quadratically with the size of the problem, prohibiting large problem instances. In this work, we propose to tackle the curse of dimensionality of large permutation matrices by approximating them using low-rank matrix factorization, followed by a nonlinearity. To this end, we rely on the Kissing number theory to infer the minimal rank required for representing a permutation matrix of a given size, which is significantly smaller than the problem size. This leads to a drastic reduction in computation and memory costs, e.g., up to $3$ orders of magnitude less memory for a problem of size $n=20000$, represented using $8.4\times10^5$ elements in two small matrices instead of using a single huge matrix with $4\times 10^8$ elements. The proposed representation allows for accurate representations of large permutation matrices, which in turn enables handling large problems that would have been infeasible otherwise. We demonstrate the applicability and merits of the proposed approach through a series of experiments on a range of problems that involve predicting permutation matrices, from linear and quadratic assignment to shape matching problems.
Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron
tl;dr: We prove that a novel type of equivariance to eigenvector symmetries is useful in several applications, and develop provably expressive networks with this equivariance.
Recent work has shown the utility of developing machine learning models that respect the structure and symmetries of eigenvectors. These works promote sign invariance, since for any eigenvector v the negation -v is also an eigenvector. However, we show that sign invariance is theoretically limited for tasks such as building orthogonally equivariant models and learning node positional encodings for link prediction in graphs. In this work, we demonstrate the benefits of sign equivariance for these tasks. To obtain these benefits, we develop novel sign equivariant neural network architectures. Our models are based on a new analytic characterization of sign equivariant polynomials and thus inherit provable expressiveness properties. Controlled synthetic experiments show that our networks can achieve the theoretically predicted benefits of sign equivariant models.
Zhanke Zhou, Jiangchao Yao, Jiaxu Liu, Xiawei Guo, quanming yao, LI He, Liang Wang, Bo Zheng, Bo Han
tl;dr: We provide an information-theory-guided principle and its two instantiations for robust link prediction under bilateral edge noise.
Although link prediction on graphs has achieved great success with the development of graph neural networks (GNNs), the potential robustness under the edge noise is still less investigated. To close this gap, we first conduct an empirical study to disclose that the edge noise bilaterally perturbs both input topology and target label, yielding severe performance degradation and representation collapse. To address this dilemma, we propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse. Different from the basic information bottleneck, RGIB further decouples and balances the mutual dependence among graph topology, target labels, and representation, building new learning objectives for robust representation against the bilateral noise. Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies, i.e., self-supervised learning and data reparameterization, for implicit and explicit data denoising, respectively. Extensive experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations. The code is publicly available at: https://github.com/tmlr-group/RGIB.
Haochuan Li, Alexander Rakhlin, Ali Jadbabaie
tl;dr: We provide a new analysis of Adam and prove its convergence without assuming boundedness of gradients, under a generalized smoothness condition. We also propose a variance-reduced version of Adam with convergence guarantees.
In this paper, we provide a rigorous proof of convergence of the Adaptive Moment Estimate (Adam) algorithm for a wide class of optimization objectives. Despite the popularity and efficiency of the Adam algorithm in training deep neural networks, its theoretical properties are not yet fully understood, and existing convergence proofs require unrealistically strong assumptions, such as globally bounded gradients, to show the convergence to stationary points. In this paper, we show that Adam provably converges to $\epsilon$-stationary points with $\mathcal{O}(\epsilon^{-4})$ gradient complexity under far more realistic conditions. The key to our analysis is a new proof of boundedness of gradients along the optimization trajectory of Adam, under a generalized smoothness assumption according to which the local smoothness (i.e., Hessian norm when it exists) is bounded by a sub-quadratic function of the gradient norm. Moreover, we propose a variance-reduced version of Adam with an accelerated gradient complexity of $\mathcal{O}(\epsilon^{-3})$.
Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan, Micah Goldblum, Colin White
tl;dr: We conduct the largest analysis of tabular data algorithms to date, and we release a suite of the hardest tabular datasets.
Tabular data is one of the most commonly used types of data in machine learning. Despite recent advances in neural nets (NNs) for tabular data, there is still an active discussion on whether or not NNs generally outperform gradient-boosted decision trees (GBDTs) on tabular data, with several recent works arguing either that GBDTs consistently outperform NNs on tabular data, or vice versa. In this work, we take a step back and question the importance of this debate. To this end, we conduct the largest tabular data analysis to date, comparing 19 algorithms across 176 datasets, and we find that the 'NN vs. GBDT' debate is overemphasized: for a surprisingly high number of datasets, either the performance difference between GBDTs and NNs is negligible, or light hyperparameter tuning on a GBDT is more important than choosing between NNs and GBDTs. Next, we analyze dozens of metafeatures to determine what \emph{properties} of a dataset make NNs or GBDTs better-suited to perform well. For example, we find that GBDTs are much better than NNs at handling skewed or heavy-tailed feature distributions and other forms of dataset irregularities. Our insights act as a guide for practitioners to determine which techniques may work best on their dataset. Finally, with the goal of accelerating tabular data research, we release the TabZilla Benchmark Suite: a collection of the 36 'hardest' of the datasets we study. Our benchmark suite, codebase, and all raw results are available at https://github.com/naszilla/tabzilla.
Haobo Zhang, Junyuan Hong, Yuyang Deng, Mehrdad Mahdavi, Jiayu Zhou
Deep Gradient Leakage (DGL) is a highly effective attack that recovers private training images from gradient vectors. This attack casts significant privacy challenges on distributed learning from clients with sensitive data, where clients are required to share gradients. Defending against such attacks requires but lacks an understanding of when and how privacy leakage happens, mostly because of the black-box nature of deep networks. In this paper, we propose a novel Inversion Influence Function (I$^2$F) that establishes a closed-form connection between the recovered images and the private gradients by implicitly solving the DGL problem. Compared to directly solving DGL, I$^2$F is scalable for analyzing deep networks, requiring only oracle access to gradients and Jacobian-vector products. We empirically demonstrate that I$^2$F effectively approximated the DGL generally on different model architectures, datasets, attack implementations, and noise-based defenses. With this novel tool, we provide insights into effective gradient perturbation directions, the unfairness of privacy protection, and privacy-preferred model initialization. Our codes are provided in https://github.com/illidanlab/inversion-influence-function.
Agrim Gupta, Jiajun Wu, Jia Deng, Li Fei-Fei
tl;dr: We propose Siamese Mased Autoencoders to learn visual correspondence from videos.
Establishing correspondence between images or scenes is a significant challenge in computer vision, especially given occlusions, viewpoint changes, and varying object appearances. In this paper, we present Siamese Masked Autoencoders (SiamMAE), a simple extension of Masked Autoencoders (MAE) for learning visual correspondence from videos. SiamMAE operates on pairs of randomly sampled video frames and asymmetrically masks them. These frames are processed independently by an encoder network, and a decoder composed of a sequence of cross-attention layers is tasked with predicting the missing patches in the future frame. By masking a large fraction (95%) of patches in the future frame while leaving the past frame unchanged, SiamMAE encourages the network to focus on object motion and learn object-centric representations. Despite its conceptual simplicity, features learned via SiamMAE outperform state-of-the-art self-supervised methods on video object segmentation, pose keypoint propagation, and semantic part propagation tasks. SiamMAE achieves competitive results without relying on data augmentation, handcrafted tracking-based pretext tasks, or other techniques to prevent representational collapse.
Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, Dilip Krishnan
tl;dr: We present that learning representations by synthetic data from text-to-image models can be very effective at large scale, even outperforming CLIP
We investigate the potential of learning visual representations using synthetic images generated by text-to-image models. This is a natural question in the light of the excellent performance of such models in generating high-quality images. We consider specifically the Stable Diffusion, one of the leading open source text-to-image models. We show that (1) when the generative model is properly configured, training self-supervised methods on synthetic images can match or beat the real image counterpart; (2) by treating the multiple images generated from the same text prompt as positives for each other, we develop a multi-positive contrastive learning method, which we call StableRep. With solely synthetic images, the representations learned by StableRep surpass the performance of representations learned by SimCLR and CLIP using the same set of text prompts and corresponding real images, on large scale datasets. When we further add language supervision, \name~trained with 20M synthetic images (10M captions) achieves better accuracy than CLIP trained with 50M real images (50M captions).
Kyowoon Lee, Seongun Kim, Jaesik Choi
Diffusion-based planning has shown promising results in long-horizon, sparse-reward tasks by training trajectory diffusion models and conditioning the sampled trajectories using auxiliary guidance functions. However, due to their nature as generative models, diffusion models are not guaranteed to generate feasible plans, resulting in failed execution and precluding planners from being useful in safety-critical applications. In this work, we propose a novel approach to refine unreliable plans generated by diffusion models by providing refining guidance to error-prone plans. To this end, we suggest a new metric named restoration gap for evaluating the quality of individual plans generated by the diffusion model. A restoration gap is estimated by a gap predictor which produces restoration gap guidance to refine a diffusion planner. We additionally present an attribution map regularizer to prevent adversarial refining guidance that could be generated from the sub-optimal gap predictor, which enables further refinement of infeasible plans. We demonstrate the effectiveness of our approach on three different benchmarks in offline control settings that require long-horizon planning. We also illustrate that our approach presents explainability by presenting the attribution maps of the gap predictor and highlighting error-prone transitions, allowing for a deeper understanding of the generated plans.
Hao-Kai Zhang, Chenghong Zhu, Mingrui Jing, Xin Wang
Quantum neural networks (QNNs) have been a promising framework in pursuing near-term quantum advantage in various fields, where many applications can be viewed as learning a quantum state that encodes useful data. As a quantum analog of probability distribution learning, quantum state learning is theoretically and practically essential in quantum machine learning. In this paper, we develop a no-go theorem for learning an unknown quantum state with QNNs even starting from a high-fidelity initial state. We prove that when the loss value is lower than a critical threshold, the probability of avoiding local minima vanishes exponentially with the qubit count, while only grows polynomially with the circuit depth. The curvature of local minima is concentrated to the quantum Fisher information times a loss-dependent constant, which characterizes the sensibility of the output state with respect to parameters in QNNs. These results hold for any circuit structures, initialization strategies, and work for both fixed ansatzes and adaptive methods. Extensive numerical simulations are performed to validate our theoretical results. Our findings place generic limits on good initial guesses and adaptive methods for improving the learnability and scalability of QNNs, and deepen the understanding of prior information's role in QNNs.
Mengyu Wang, Henghui Ding, Jun Hao Liew, Jiajun Liu, Yao Zhao, Yunchao Wei
tl;dr: We propose a universal segmentation refinement framework based on the discrete diffusion models.
In this paper, we explore a principal way to enhance the quality of object masks produced by different segmentation models. We propose a model-agnostic solution called SegRefiner, which offers a novel perspective on this problem by interpreting segmentation refinement as a data generation process. As a result, the refinement process can be smoothly implemented through a series of denoising diffusion steps. Specifically, SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process. By predicting the label and corresponding states-transition probabilities for each pixel, SegRefiner progressively refines the noisy masks in a conditional denoising manner. To assess the effectiveness of SegRefiner, we conduct comprehensive experiments on various segmentation tasks, including semantic segmentation, instance segmentation, and dichotomous image segmentation. The results demonstrate the superiority of our SegRefiner from multiple aspects. Firstly, it consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks. Secondly, it outperforms previous model-agnostic refinement methods by a significant margin. Lastly, it exhibits a strong capability to capture extremely fine details when refining high-resolution images. The source code and trained models are available at [SegRefiner.git](https://github.com/MengyuWang826/SegRefiner)
Bowen Li, Jiashun Wang, Yaoyu Hu, Chen Wang, Sebastian Scherer
tl;dr: This work proposes VoxDet, a novel instance detector based on geometry-invariant voxel learning.
Detecting unseen instances based on multi-view templates is a challenging problem due to its open-world nature. Traditional methodologies, which primarily rely on $2 \mathrm{D}$ representations and matching techniques, are often inadequate in handling pose variations and occlusions. To solve this, we introduce VoxDet, a pioneer 3D geometry-aware framework that fully utilizes the strong 3D voxel representation and reliable voxel matching mechanism. VoxDet first ingeniously proposes template voxel aggregation (TVA) module, effectively transforming multi-view 2D images into 3D voxel features. By leveraging associated camera poses, these features are aggregated into a compact 3D template voxel. In novel instance detection, this voxel representation demonstrates heightened resilience to occlusion and pose variations. We also discover that a $3 \mathrm{D}$ reconstruction objective helps to pre-train the 2D-3D mapping in TVA. Second, to quickly align with the template voxel, VoxDet incorporates a Query Voxel Matching (QVM) module. The 2D queries are first converted into their voxel representation with the learned 2D-3D mapping. We find that since the 3D voxel representations encode the geometry, we can first estimate the relative rotation and then compare the aligned voxels, leading to improved accuracy and efficiency. In addition to method, we also introduce the first instance detection benchmark, RoboTools, where 20 unique instances are video-recorded with camera extrinsic. RoboTools also provides 24 challenging cluttered scenarios with more than $9 \mathrm{k}$ box annotations. Exhaustive experiments are conducted on the demanding LineMod-Occlusion, YCB-video, and RoboTools benchmarks, where VoxDet outperforms various $2 \mathrm{D}$ baselines remarkably with faster speed. To the best of our knowledge, VoxDet is the first to incorporate implicit 3D knowledge for 2D novel instance detection tasks.
Yongxin Shi, Chongyu Liu, Dezhi Peng, Cheng Jian, Jiarong Huang, Lianwen Jin
Recognizing and organizing text in correct reading order plays a crucial role in historical document analysis and preservation. While existing methods have shown promising performance, they often struggle with challenges such as diverse layouts, low image quality, style variations, and distortions. This is primarily due to the lack of consideration for these issues in the current benchmarks, which hinders the development and evaluation of historical document analysis and recognition (HDAR) methods in complex real-world scenarios. To address this gap, this paper introduces a complex multi-style Chinese historical document analysis benchmark, named M5HisDoc. The M5 indicates five properties of style, ie., Multiple layouts, Multiple document types, Multiple calligraphy styles, Multiple backgrounds, and Multiple challenges. The M5HisDoc dataset consists of two subsets, M5HisDoc-R (Regular) and M5HisDoc-H (Hard). The M5HisDoc-R subset comprises 4,000 historical document images. To ensure high-quality annotations, we meticulously perform manual annotation and triple-checking. To replicate real-world conditions for historical document analysis applications, we incorporate image rotation, distortion, and resolution reduction into M5HisDoc-R subset to form a new challenging subset named M5HisDoc-H, which contains the same number of images as M5HisDoc-R. The dataset exhibits diverse styles, significant scale variations, dense texts, and an extensive character set. We conduct benchmarking experiments on five tasks: text line detection, text line recognition, character detection, character recognition, and reading order prediction. We also conduct cross-validation with other benchmarks. Experimental results demonstrate that the M5HisDoc dataset can offer new challenges and great opportunities for future research in this field, thereby providing deep insights into the solution for HDAR. The dataset is available at https://github.com/HCIILAB/M5HisDoc.
Xingyu Chen, Weiyao Wang, Hao Tang, Matt Feiszli
tl;dr: This paper proposes a novel evaluation protocol, Object Reprojection Error (ORE) and a large-scale diverse dataset EgoStatic to benchmark camera trajectories with only lightweight object tracklet annotations.
3D spatial understanding is highly valuable in the context of semantic modeling of environments, agents, and their relationships. Semantic modeling approaches employed on monocular video often ingest outputs from off-the-shelf SLAM/SfM pipelines, which are anecdotally observed to perform poorly or fail completely on some fraction of the videos of interest. These target videos may vary widely in complexity of scenes, activities, camera trajectory, etc. Unfortunately, such semantically-rich video data often comes with no ground-truth 3D information, and in practice it is prohibitively costly or impossible to obtain ground truth reconstructions or camera pose post-hoc. This paper proposes a novel evaluation protocol, Object Reprojection Error (ORE) to benchmark camera trajectories; ORE computes reprojection error for static objects within the video and requires only lightweight object tracklet annotations. These annotations are easy to gather on new or existing video, enabling ORE to be calculated on essentially arbitrary datasets. We show that ORE maintains high rank correlation with standard metrics based on groundtruth. Leveraging ORE, we source videos and annotations from Ego4D-EgoTracks, resulting in EgoStatic, a large-scale diverse dataset for evaluating camera trajectories in-the-wild.
Lingdong Kong, Shaoyuan Xie, Hanjiang Hu, Lai Xing Ng, Benoit R Cottereau, Wei Tsang Ooi
tl;dr: RoboDepth is a systematically designed robustness evaluation suite for monocular depth estimation under OoD corruptions.
Depth estimation from monocular images is pivotal for real-world visual perception systems. While current learning-based depth estimation models train and test on meticulously curated data, they often overlook out-of-distribution (OoD) situations. Yet, in practical settings -- especially safety-critical ones like autonomous driving -- common corruptions can arise. Addressing this oversight, we introduce a comprehensive robustness test suite, RoboDepth, encompassing 18 corruptions spanning three categories: i) weather and lighting conditions; ii) sensor failures and movement; and iii) data processing anomalies. We subsequently benchmark 42 depth estimation models across indoor and outdoor scenes to assess their resilience to these corruptions. Our findings underscore that, in the absence of a dedicated robustness evaluation framework, many leading depth estimation models may be susceptible to typical corruptions. We delve into design considerations for crafting more robust depth estimation models, touching upon pre-training, augmentation, modality, model capacity, and learning paradigms. We anticipate our benchmark will establish a foundational platform for advancing robust OoD depth estimation.
Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, Jia Li
tl;dr: We introduce a comprehensive benchmark for supervised anomalous node detection on static attributed graphs, covering 29 distinct models and 10 real-world datasets.
With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a standard comprehensive setting, (2) whether GNNs can outperform traditional algorithms such as tree ensembles, and (3) how about their efficiency on large-scale graphs. In response, we introduce GADBench---a benchmark tool dedicated to supervised anomalous node detection in static graphs. GADBench facilitates a detailed comparison across 29 distinct models on ten real-world GAD datasets, encompassing thousands to millions (~6M) nodes. Our main finding is that tree ensembles with simple neighborhood aggregation can outperform the latest GNNs tailored for the GAD task. We shed light on the current progress of GAD, setting a robust groundwork for subsequent investigations in this domain. GADBench is open-sourced at https://github.com/squareRoot3/GADBench.
Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravi Iyer, Tamer Basar
tl;dr: For multi-agent reinforcement learning, we prove that meta-learning can help achieve sharper convergence rates than individual learning when the learning tasks are similar according to natural similarity metrics.
Multi-agent reinforcement learning (MARL) has primarily focused on solving a single task in isolation, while in practice the environment is often evolving, leaving many related tasks to be solved. In this paper, we investigate the benefits of meta-learning in solving multiple MARL tasks collectively. We establish the first line of theoretical results for meta-learning in a wide range of fundamental MARL settings, including learning Nash equilibria in two-player zero-sum Markov games and Markov potential games, as well as learning coarse correlated equilibria in general-sum Markov games. Under natural notions of task similarity, we show that meta-learning achieves provable sharper convergence to various game-theoretical solution concepts than learning each task separately. As an important intermediate step, we develop multiple MARL algorithms with initialization-dependent convergence guarantees. Such algorithms integrate optimistic policy mirror descents with stage-based value updates, and their refined convergence guarantees (nearly) recover the best known results even when a good initialization is unknown. To our best knowledge, such results are also new and might be of independent interest. We further provide numerical simulations to corroborate our theoretical findings.
Shengqiong Wu, Hao Fei, Hanwang Zhang, Tat-Seng Chua
tl;dr: We solve the text-to-image synthesis under the abstract-to-intricate setting with a novel scene-graph hallucination mechanism with diffusion models.
In this work, we investigate the task of text-to-image (T2I) synthesis under the abstract-to-intricate setting, i.e., generating intricate visual content from simple abstract text prompts. Inspired by human imagination intuition, we propose a novel scene-graph hallucination (SGH) mechanism for effective abstract-to-intricate T2I synthesis. SGH carries out scene hallucination by expanding the initial scene graph (SG) of the input prompt with more feasible specific scene structures, in which the structured semantic representation of SG ensures high controllability of the intrinsic scene imagination. To approach the T2I synthesis, we deliberately build an SG-based hallucination diffusion system. First, we implement the SGH module based on the discrete diffusion technique, which evolves the SG structure by iteratively adding new scene elements. Then, we utilize another continuous-state diffusion model as the T2I synthesizer, where the overt image-generating process is navigated by the underlying semantic scene structure induced from the SGH module. On the benchmark COCO dataset, our system outperforms the existing best-performing T2I model by a significant margin, especially improving on the abstract-to-intricate T2I generation. Further in-depth analyses reveal how our methods advance.
Leonard Papenmeier, Luigi Nardi, Matthias Poloczek
tl;dr: We propose a Bayesian optimization algorithm for combinatorial, mixed, and continuous spaces that is robust and gives state-of-the-art performance on a wide set of benchmarks.
Impactful applications such as materials discovery, hardware design, neural architecture search, or portfolio optimization require optimizing high-dimensional black-box functions with mixed and combinatorial input spaces. While Bayesian optimization has recently made significant progress in solving such problems, an in-depth analysis reveals that the current state-of-the-art methods are not reliable. Their performances degrade substantially when the unknown optima of the function do not have a certain structure. To fill the need for a reliable algorithm for combinatorial and mixed spaces, this paper proposes Bounce that relies on a novel map of various variable types into nested embeddings of increasing dimensionality. Comprehensive experiments show that Bounce reliably achieves and often even improves upon state-of-the-art performance on a variety of high-dimensional problems.
Yujia Zheng, Kun Zhang
tl;dr: We establish a set of new identifiability results of nonlinear ICA in the general settings of undercompleteness, partial sparsity and source dependence, and flexible grouping structures.
Nonlinear independent component analysis (ICA) aims to uncover the true latent sources from their observable nonlinear mixtures. Despite its significance, the identifiability of nonlinear ICA is known to be impossible without additional assumptions. Recent advances have proposed conditions on the connective structure from sources to observed variables, known as Structural Sparsity, to achieve identifiability in an unsupervised manner. However, the sparsity constraint may not hold universally for all sources in practice. Furthermore, the assumptions of bijectivity of the mixing process and independence among all sources, which arise from the setting of ICA, may also be violated in many real-world scenarios. To address these limitations and generalize nonlinear ICA, we propose a set of new identifiability results in the general settings of undercompleteness, partial sparsity and source dependence, and flexible grouping structures. Specifically, we prove identifiability when there are more observed variables than sources (undercomplete), and when certain sparsity and/or source independence assumptions are not met for some changing sources. Moreover, we show that even in cases with flexible grouping structures (e.g., part of the sources can be divided into irreducible independent groups with various sizes), appropriate identifiability results can also be established. Theoretical claims are supported empirically on both synthetic and real-world datasets.
Pengxiang Wu, Siman Wang, Kevin S Dela Rosa, Derek Hao Hu
tl;dr: This paper presents a new benchmark for evaluating different image embeddings on image retrieval task and reveals intriguing properties of different designs.
Image retrieval is a fundamental task in computer vision. Despite recent advances in this field, many techniques have been evaluated on a limited number of domains, with a small number of instance categories. Notably, most existing works only consider domains like 3D landmarks, making it difficult to generalize the conclusions made by these works to other domains, e.g., logo and other 2D flat objects. To bridge this gap, we introduce a new dataset for benchmarking visual search methods on flat images with diverse patterns. Our flat object retrieval benchmark (FORB) supplements the commonly adopted 3D object domain, and more importantly, it serves as a testbed for assessing the image embedding quality on out-of-distribution domains. In this benchmark we investigate the retrieval accuracy of representative methods in terms of candidate ranks, as well as matching score margin, a viewpoint which is largely ignored by many works. Our experiments not only highlight the challenges and rich heterogeneity of FORB, but also reveal the hidden properties of different retrieval strategies. The proposed benchmark is a growing project and we expect to expand in both quantity and variety of objects. The dataset and supporting codes are available at https://github.com/pxiangwu/FORB/.
Wang Xinrui, wan wenhai, Chuanxing Geng, Shao-Yuan Li, Songcan Chen
tl;dr: Learning from Positive and Unlabeled Data through Holistic Predictive Trends
Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of recent PUL methods, challenges like accumulated errors and increased estimation bias persist due to the absence of negative labels. In this paper, we unveil an intriguing yet long-overlooked observation in PUL: \textit{resampling the positive data in each training iteration to ensure a balanced distribution between positive and unlabeled examples results in strong early-stage performance. Furthermore, predictive trends for positive and negative classes display distinctly different patterns.} Specifically, the scores (output probability) of unlabeled negative examples consistently decrease, while those of unlabeled positive examples show largely chaotic trends. Instead of focusing on classification within individual time frames, we innovatively adopt a holistic approach, interpreting the scores of each example as a temporal point process (TPP). This reformulates the core problem of PUL as recognizing trends in these scores. We then propose a novel TPP-inspired measure for trend detection and prove its asymptotic unbiasedness in predicting changes. Notably, our method accomplishes PUL without requiring additional parameter tuning or prior assumptions, offering an alternative perspective for tackling this problem. Extensive experiments verify the superiority of our method, particularly in a highly imbalanced real-world setting, where it achieves improvements of up to $11.3\%$ in key metrics.
Carlos Mougan, Richard Plant, Clare Teng, Marya Bazzi, Alvaro Cabrejas-Egea, Ryan Sze-Yin Chan, David Salvador Jasin, martin stoffel, Kirstie Jane Whitaker, JULES MANSER
tl;dr: We provide a data analysis framework for data in datathons
The rise of datathons, also known as data or data science hackathons, has provided a platform to collaborate, learn, and innovate quickly. Despite their significant potential benefits, organizations often struggle to effectively work with data due to a lack of clear guidelines and best practices for potential issues that might arise. Drawing on our own experiences and insights from organizing +80 datathon challenges with +60 partnership organizations since 2016, we provide a guide that serves as a resource for organizers to navigate the data-related complexities of datathons. We apply our proposed framework to 10 case studies.
Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, Ludwig Schmidt
tl;dr: We demonstrate the effectiveness of generated captions in increasing the utility of web-scraped image-text pairs with nondescript text, in the context of CLIP pre-training
Massive web datasets play a key role in the success of large vision-language models like CLIP and Flamingo. However, the raw web data is noisy, and existing filtering methods to reduce noise often come at the expense of data diversity. Our work focuses on caption quality as one major source of noise, and studies how generated captions can increase the utility of web-scraped datapoints with nondescript text. Through exploring different mixing strategies for raw and generated captions, we outperform the best filtering method proposed by the DataComp benchmark by 2% on ImageNet and 4% on average across 38 tasks, given a candidate pool of 128M image-text pairs. Our best approach is also 2x better at Flickr and MS-COCO retrieval. We then analyze what makes synthetic captions an effective source of text supervision. In experimenting with different image captioning models, we also demonstrate that the performance of a model on standard image captioning benchmarks (e.g., NoCaps CIDEr) is not a reliable indicator of the utility of the captions it generates for multimodal training. Finally, our experiments with using generated captions at DataComp's large scale (1.28B image-text pairs) offer insights into the limitations of synthetic text, as well as the importance of image curation with increasing training data quantity. The synthetic captions used in our experiments are now available on HuggingFace.
Patric Bonnier, Harald Oberhauser, Zoltán Szabó
tl;dr: We define cumulants for random variables in RKHSs and demonstrate their properties and usefulness.
In $\mathbb{R}^d$, it is well-known that cumulants provide an alternative to moments that can achieve the same goals with numerous benefits such as lower variance estimators. In this paper we extend cumulants to reproducing kernel Hilbert spaces (RKHS) using tools from tensor algebras and show that they are computationally tractable by a kernel trick. These kernelized cumulants provide a new set of all-purpose statistics; the classical maximum mean discrepancy and Hilbert-Schmidt independence criterion arise as the degree one objects in our general construction. We argue both theoretically and empirically (on synthetic, environmental, and traffic data analysis) that going beyond degree one has several advantages and can be achieved with the same computational complexity and minimal overhead in our experiments.
Daogao Liu, Arun Ganesh, Sewoong Oh, Abhradeep Guha Thakurta
We reconsider the challenge of non-convex optimization under differential privacy constraint. Building upon the previous variance-reduced algorithm SpiderBoost, we propose a novel framework that employs two types of gradient oracles: one that estimates the gradient at a single point and a more cost-effective option that calculates the gradient difference between two points. Our framework can ensure continuous accuracy of gradient estimations and subsequently enhances the rates of identifying second-order stationary points. Additionally, we consider a more challenging task by attempting to locate the global minima of a non-convex objective via the exponential mechanism without almost any assumptions. Our preliminary results suggest that the regularized exponential mechanism can effectively emulate previous empirical and population risk bounds, negating the need for smoothness assumptions for algorithms with polynomial running time. Furthermore, with running time factors excluded, the exponential mechanism demonstrates promising population risk bound performance, and we provide a nearly matching lower bound.
Congyue Deng, Jiahui Lei, Bokui Shen, Kostas Daniilidis, Leonidas Guibas
Equivariance has gained strong interest as a desirable network property that inherently ensures robust generalization. However, when dealing with complex systems such as articulated objects or multi-object scenes, effectively capturing inter-part transformations poses a challenge, as it becomes entangled with the overall structure and local transformations. The interdependence of part assignment and per-part group action necessitates a novel equivariance formulation that allows for their co-evolution. In this paper, we present Banana, a Banach fixed-point network for equivariant segmentation with inter-part equivariance by construction. Our key insight is to iteratively solve a fixed-point problem, where point-part assignment labels and per-part SE(3)-equivariance co-evolve simultaneously. We provide theoretical derivations of both per-step equivariance and global convergence, which induces an equivariant final convergent state. Our formulation naturally provides a strict definition of inter-part equivariance that generalizes to unseen inter-part configurations. Through experiments conducted on both articulated objects and multi-object scans, we demonstrate the efficacy of our approach in achieving strong generalization under inter-part transformations, even when confronted with substantial changes in pointcloud geometry and topology.
Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, Seong Joon Oh
The rapid advancement and widespread use of large language models (LLMs) have raised significant concerns regarding the potential leakage of personally identifiable information (PII). These models are often trained on vast quantities of web-collected data, which may inadvertently include sensitive personal data. This paper presents ProPILE, a novel probing tool designed to empower data subjects, or the owners of the PII, with awareness of potential PII leakage in LLM-based services. ProPILE lets data subjects formulate prompts based on their own PII to evaluate the level of privacy intrusion in LLMs. We demonstrate its application on the OPT-1.3B model trained on the publicly available Pile dataset. We show how hypothetical data subjects may assess the likelihood of their PII being included in the Pile dataset being revealed. ProPILE can also be leveraged by LLM service providers to effectively evaluate their own levels of PII leakage with more powerful prompts specifically tuned for their in-house models. This tool represents a pioneering step towards empowering the data subjects for their awareness and control over their own data on the web.
Wonhyeok Choi, Mingyu Shin, Sunghoon Im
tl;dr: A novel metric learning approach to improve monocular 3D object detection without increasing model complexity.
Monocular 3D object detection poses a significant challenge due to the lack of depth information in RGB images. Many existing methods strive to enhance the object depth estimation performance by allocating additional parameters for object depth estimation, utilizing extra modules or data. In contrast, we introduce a novel metric learning scheme that encourages the model to extract depth-discriminative features regardless of the visual attributes without increasing inference time and model size. Our method employs the distance-preserving function to organize the feature space manifold in relation to ground-truth object depth. The proposed $(K,B,\epsilon)$-quasi-isometric loss leverages predetermined pairwise distance restriction as guidance for adjusting the distance among object descriptors without disrupting the non-linearity of the natural feature manifold. Moreover, we introduce an auxiliary head for object-wise depth estimation, which enhances depth quality while maintaining the inference time. The broad applicability of our method is demonstrated through experiments that show improvements in overall performance when integrated into various baselines. The results show that our method consistently improves the performance of various baselines by 23.51\% and 5.78\% on average across KITTI and Waymo, respectively.
Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Re, Adam Chilton, Aditya Narayana, Alex Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, Dmitry Talisman, Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory M. Dickinson, Haggai Porat, Jason Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John J Nay, Jonathan H. Choi, Kevin Tobia, Margaret Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzenberger, Noam Kolt, Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer Williams, Sunny Gandhi, Tom Zur, Varun Iyer, Zehua Li
tl;dr: We work with the legal community to develop a benchmark of 160+ tasks to evaluate legal reasoning in large language models
The advent of large language models (LLMs) and their adoption by the legal community has given rise to the question: what types of legal reasoning can LLMs perform? To enable greater study of this question, we present LegalBench: a collaboratively constructed legal reasoning benchmark consisting of 162 tasks covering six different types of legal reasoning. LegalBench was built through an interdisciplinary process, in which we collected tasks designed and hand-crafted by legal professionals. Because these subject matter experts took a leading role in construction, tasks either measure legal reasoning capabilities that are practically useful, or measure reasoning skills that lawyers find interesting. To enable cross-disciplinary conversations about LLMs in the law, we additionally show how popular legal frameworks for describing legal reasoning—which distinguish between its many forms—correspond to LegalBench tasks, thus giving lawyers and LLM developers a common vocabulary. This paper describes LegalBench, presents an empirical evaluation of 20 open-source and commercial LLMs, and illustrates the types of research explorations LegalBench enables.
Kushin Mukherjee, Holly Huey, Xuanchen Lu, Yael Vinker, Rio Aguina-Kang, Ariel Shamir, Judith E Fan
tl;dr: We evaluate a suite of state-of-the-art vision models in their ability to understand human sketches at varying levels of abstraction
Sketching is a powerful tool for creating abstract images that are sparse but meaningful. Sketch understanding poses fundamental challenges for general-purpose vision algorithms because it requires robustness to the sparsity of sketches relative to natural visual inputs and because it demands tolerance for semantic ambiguity, as sketches can reliably evoke multiple meanings. While current vision algorithms have achieved high performance on a variety of visual tasks, it remains unclear to what extent they understand sketches in a human-like way. Here we introduce $\texttt{SEVA}$, a new benchmark dataset containing approximately 90K human-generated sketches of 128 object concepts produced under different time constraints, and thus systematically varying in sparsity. We evaluated a suite of state-of-the-art vision algorithms on their ability to correctly identify the target concept depicted in these sketches and to generate responses that are strongly aligned with human response patterns on the same sketch recognition task. We found that vision algorithms that better predicted human sketch recognition performance also better approximated human uncertainty about sketch meaning, but there remains a sizable gap between model and human response patterns. To explore the potential of models that emulate human visual abstraction in generative tasks, we conducted further evaluations of a recently developed sketch generation algorithm (Vinker et al., 2022) capable of generating sketches that vary in sparsity. We hope that public release of this dataset and evaluation protocol will catalyze progress towards algorithms with enhanced capacities for human-like visual abstraction.
Zhiqing Sun, Yiming Yang
tl;dr: We developed the first diffusion model-based solver on graphs for combinatorial optimization problems.
Neural network-based Combinatorial Optimization (CO) methods have shown promising results in solving various NP-complete (NPC) problems without relying on hand-crafted domain knowledge. This paper broadens the current scope of neural solvers for NPC problems by introducing a new graph-based diffusion framework, namely DIFUSCO. It formulates NPC problems into a discrete {0, 1}-vector space and uses graph-based denoising diffusion models to generate high-quality solutions. Specifically, we explore diffusion models with Gaussian and Bernoulli noise, respectively, and also introduce an effective inference schedule to improve the generation quality. We evaluate our methods on two well-studied combinatorial optimization problems: Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS). Experimental results show that DIFUSCO strongly outperforms the previous state-of-the-art neural solvers, improving the performance gap between ground-truth and neural solvers from 1.76% to 0.46% on TSP-500, from 2.46% to 1.17% on TSP-1000, and from 3.19% to 2.58% on TSP-10000. For the MIS problem, DIFUSCO outperforms the previous state-of-the-art neural solver on the challenging SATLIB benchmark. Our code is available at [this url](https://github.com/Edward-Sun/DIFUSCO).
Jayadev Acharya, Clement Louis Canonne, Ziteng Sun, Himanshu Tyagi
tl;dr: We develop a new lower bound framework for statistical estimation under measurement or information constraints, letting us easily derive new and known minimax rates,
We consider distributed parameter estimation using interactive protocols subject to local information constraints such as bandwidth limitations, local differential privacy, and restricted measurements. We provide a unified framework enabling us to derive a variety of (tight) minimax lower bounds for different parametric families of distributions, both continuous and discrete, under any $\ell_p$ loss. Our lower bound framework is versatile and yields “plug-and-play” bounds that are widely applicable to a large range of estimation problems, and, for the prototypical case of the Gaussian family, circumvents limitations of previous techniques. In particular, our approach recovers bounds obtained using data processing inequalities and Cramér–Rao bounds, two other alternative approaches for proving lower bounds in our setting of interest. Further, for the families considered, we complement our lower bounds with matching upper bounds.
Deeparnab Chakrabarty, Andrei Graur, Haotian Jiang, Aaron Sidford
We consider the parallel complexity of submodular function minimization (SFM). We provide a pair of methods which obtain two new query versus depth trade-offs a submodular function defined on subsets of $n$ elements that has integer values between $-M$ and $M$. The first method has depth $2$ and query complexity $n^{O(M)}$ and the second method has depth $\widetilde{O}(n^{1/3} M^{2/3})$ and query complexity $O(\mathrm{poly}(n, M))$. Despite a line of work on improved parallel lower bounds for SFM, prior to our work the only known algorithms for parallel SFM either followed from more general methods for sequential SFM or highly-parallel minimization of convex $\ell_2$-Lipschitz functions. Interestingly, to obtain our second result we provide the first highly-parallel algorithm for minimizing $\ell_\infty$-Lipschitz function over the hypercube which obtains near-optimal depth for obtaining constant accuracy.
Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, Jun Zhu
tl;dr: We achieve photo-realistic text-to-3D results by only using 2D diffusion models, with our variational score distillation training objective.
Score distillation sampling (SDS) has shown great promise in text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models, but suffers from over-saturation, over-smoothing, and low-diversity problems. In this work, we propose to model the 3D parameter as a random variable instead of a constant as in SDS and present *variational score distillation* (VSD), a principled particle-based variational framework to explain and address the aforementioned issues in text-to-3D generation. We show that SDS is a special case of VSD and leads to poor samples with both small and large CFG weights. In comparison, VSD works well with various CFG weights as ancestral sampling from diffusion models and simultaneously improves the diversity and sample quality with a common CFG weight (i.e., 7.5). We further present various improvements in the design space for text-to-3D such as distillation time schedule and density initialization, which are orthogonal to the distillation algorithm yet not well explored. Our overall approach, dubbed *ProlificDreamer*, can generate high rendering resolution (i.e., 512$\times$512) and high-fidelity NeRF with rich structure and complex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes fine-tuned by VSD are meticulously detailed and photo-realistic.
David Mizrahi, Roman Bachmann, Oguzhan Fatih Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan, Amir Zamir
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in computer vision. In this paper, we take a step in this direction and propose a multimodal training scheme called 4M. It consists of training a single unified Transformer encoder-decoder using a masked modeling objective across a wide range of input/output modalities – including text, images, geometric, and semantic modalities, as well as neural network feature maps. 4M achieves scalability by unifying the representation space of all modalities through mapping them into discrete tokens and performing multimodal masked modeling on a small randomized subset of tokens. 4M leads to models that exhibit several key capabilities: (1) they can perform a diverse set of vision tasks out of the box, (2) they excel when fine-tuned for unseen downstream tasks or new input modalities, and (3) they can function as a generative model that can be conditioned on arbitrary modalities, enabling a wide variety of expressive multimodal editing capabilities with remarkable flexibility. Through experimental analyses, we demonstrate the potential of 4M for training versatile and scalable foundation models for vision tasks, setting the stage for further exploration in multimodal learning for vision and other domains.
Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Frederick Wieting, Mohit Iyyer
tl;dr: We show that current AI-generated text detectors are brittle against paraphrasing attacks, and present a retrieval-based detector as a defense.
The rise in malicious usage of large language models, such as fake content creation and academic plagiarism, has motivated the development of approaches that identify AI-generated text, including those based on watermarking or outlier detection. However, the robustness of these detection algorithms to paraphrases of AI-generated text remains unclear. To stress test these detectors, we build a 11B parameter paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering. Paraphrasing text generated by three large language models (including GPT3.5-davinci-003) with DIPPER successfully evades several detectors, including watermarking, GPTZero, DetectGPT, and OpenAI's text classifier. For example, DIPPER drops detection accuracy of DetectGPT from 70.3% to 4.6% (at a constant false positive rate of 1%), without appreciably modifying the input semantics. To increase the robustness of AI-generated text detection to paraphrase attacks, we introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider. Given a candidate text, our algorithm searches a database of sequences previously generated by the API, looking for sequences that match the candidate text within a certain threshold. We empirically verify our defense using a database of 15M generations from a fine-tuned T5-XXL model and find that it can detect 80% to 97% of paraphrased generations across different settings while only classifying 1% of human-written sequences as AI-generated. We open-source our models, code and data.
Markus Utke, Ulrike Schmidt-Kraepelin
Liquid democracy with ranked delegations is a novel voting scheme that unites the practicability of representative democracy with the idealistic appeal of direct democracy: Every voter decides between casting their vote on a question at hand or delegating their voting weight to some other, trusted agent. Delegations are transitive, and since voters may end up in a delegation cycle, they are encouraged to indicate not only a single delegate, but a set of potential delegates and a ranking among them. Based on the delegation preferences of all voters, a delegation rule selects one representative per voter. Previous work has revealed a trade-off between two properties of delegation rules called anonymity and copy-robustness. To overcome this issue we study two fractional delegation rules: Mixed Borda branching, which generalizes a rule satisfying copy-robustness, and the random walk rule, which satisfies anonymity. Using the Markov chain tree theorem, we show that the two rules are in fact equivalent, and simultaneously satisfy generalized versions of the two properties. Combining the same theorem with Fulkerson's algorithm, we develop a polynomial-time algorithm for computing the outcome of the studied delegation rule. This algorithm is of independent interest, having applications in semi-supervised learning and graph theory.
Chaoqi Wang, Ziyu Ye, Zhe Feng, Ashwinkumar Badanidiyuru, Haifeng Xu
tl;dr: This study presents a new algorithm that improves the contextual bandit problem by using post-serving context, demonstrating superior performance on various data sets.
Standard contextual bandit problem assumes that all the relevant contexts are observed before the algorithm chooses an arm. This modeling paradigm, while useful, often falls short when dealing with problems in which additional valuable contexts can be observed after arm selection. For example, content recommendation platforms like Youtube, Instagram, Tiktok receive much additional features about a user's reward after the user clicks a content (e.g., how long the user stayed, what is the user's watch speed, etc.). To improve online learning efficiency in these applications, we study a novel contextual bandit problem with post-serving contexts and design a new algorithm, poLinUCB, that achieves tight regret under standard assumptions. Core to our technical proof is a robustified and generalized version of the well-known Elliptical Potential Lemma (EPL), which can accommodate noise in data. Such robustification is necessary for tackling our problem, though we believe it could also be of general interest. Extensive empirical tests on both synthetic and real-world datasets demonstrate the significant benefit of utilitzing post-serving contexts as well as the superior performance of our algorithm over the state-of-the-art approaches.
Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrei Spiridonov, Evgeny Burnaev, Alexander Korotin
Over the last several years, there has been significant progress in developing neural solvers for the Schrödinger Bridge (SB) problem and applying them to generative modelling. This new research field is justifiably fruitful as it is interconnected with the practically well-performing diffusion models and theoretically grounded entropic optimal transport (EOT). Still, the area lacks non-trivial tests allowing a researcher to understand how well the methods solve SB or its equivalent continuous EOT problem. We fill this gap and propose a novel way to create pairs of probability distributions for which the ground truth OT solution is known by the construction. Our methodology is generic and works for a wide range of OT formulations, in particular, it covers the EOT which is equivalent to SB (the main interest of our study). This development allows us to create continuous benchmark distributions with the known EOT and SB solutions on high-dimensional spaces such as spaces of images. As an illustration, we use these benchmark pairs to test how well existing neural EOT/SB solvers actually compute the EOT solution. Our code for constructing benchmark pairs under different setups is available at: https://github.com/ngushchin/EntropicOTBenchmark
Tianyuan Teng, Li Kevin Wenliang, Hang Zhang
tl;dr: We found structural inconsistencies in human density estimation and (from a large nonparametric class) we identified a bounded-rational internal model in human cognition.
Learning to accurately represent environmental uncertainty is crucial for adaptive and optimal behaviors in various cognitive tasks. However, it remains unclear how the human brain, constrained by finite cognitive resources, constructs an internal model from an infinite space of probability distributions. In this study, we explore how these learned distributions deviate from the ground truth, resulting in observable inconsistency in a novel structured density estimation task. During each trial, human participants were asked to form and report the latent probability distribution functions underlying sequentially presented independent observations. As the number of observations increased, the reported predictive density became closer to the ground truth. Nevertheless, we observed an intriguing inconsistency in human structure estimation, specifically a large error in the number of reported clusters. Such inconsistency is invariant to the scale of the distribution and persists across stimulus modalities. We modeled uncertainty learning as approximate Bayesian inference in a nonparametric mixture prior of distributions. Human reports were best explained under resource rationality embodied in a decaying tendency towards model expansion. Our study offers insights into human cognitive processes under uncertainty and lays the groundwork for further exploration of resource-rational representations in the brain under more complex tasks.
Sebastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, Simon Lacoste-Julien
tl;dr: We show that additive decoders have an identifiable representation and allow to generate novel images never seen during training, an ability we refer to as Cartesian-product extrapolation.
We tackle the problems of latent variables identification and "out-of-support'' image generation in representation learning. We show that both are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.
Austin Tripp, Sergio Bacallado, Sukriti Singh, José Miguel Hernández-Lobato
tl;dr: We replace the discrete Tanimoto kernel/metric with continuous versions and show improved performance on a variety of tasks.
The Tanimoto coefficient is commonly used to measure the similarity between molecules represented as discrete fingerprints, either as a distance metric or a positive definite kernel. While many kernel methods can be accelerated using random feature approximations, at present there is a lack of such approximations for the Tanimoto kernel. In this paper we propose two kinds of novel random features to allow this kernel to scale to large datasets, and in the process discover a novel extension of the kernel to real-valued vectors. We theoretically characterize these random features, and provide error bounds on the spectral norm of the Gram matrix. Experimentally, we show that these random features are effective at approximating the Tanimoto coefficient of real-world datasets and are useful for molecular property prediction and optimization tasks. Future updates to this work will be available at http://arxiv.org/abs/2306.14809.
Roberto Cipollone, Anders Jonsson, Alessandro Ronca, Mohammad Sadegh Talebi
tl;dr: We present a provably efficient algorithm for offline Reinforcement Learning in episodic Regular Decision Processes
This paper deals with offline (or batch) Reinforcement Learning (RL) in episodic Regular Decision Processes (RDPs). RDPs are the subclass of Non-Markov Decision Processes where the dependency on the history of past events can be captured by a finite-state automaton. We consider a setting where the automaton that underlies the RDP is unknown, and a learner strives to learn a near-optimal policy using pre-collected data, in the form of non-Markov sequences of observations, without further exploration. We present RegORL, an algorithm that suitably combines automata learning techniques and state-of-the-art algorithms for offline RL in MDPs. RegORL has a modular design allowing one to use any off-the-shelf offline RL algorithm in MDPs. We report a non-asymptotic high-probability sample complexity bound for RegORL to yield an $\varepsilon$-optimal policy, which makes appear a notion of concentrability relevant for RDPs. Furthermore, we present a sample complexity lower bound for offline RL in RDPs. To our best knowledge, this is the first work presenting a provably efficient algorithm for offline learning in RDPs.
Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng Lv, Yikai Zhang, jiayi lei, Yao Fu, Maosong Sun, Junxian He
tl;dr: We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context.
New NLP benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context. C-Eval comprises multiple-choice questions across four difficulty levels: middle school, high school, college, and professional. The questions span 52 diverse disciplines, ranging from humanities to science and engineering. C-Eval is accompanied by C-Eval Hard, a subset of very challenging subjects in C-Eval that requires advanced reasoning abilities to solve. We conduct a comprehensive evaluation of the most advanced LLMs on C-Eval, including both English- and Chinese-oriented models. Results indicate that only GPT-4 could achieve an average accuracy of over 60%, suggesting that there is still significant room for improvement for current LLMs. We anticipate C-Eval will help analyze important strengths and shortcomings of foundation models, and foster their development and growth for Chinese users.
An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, Tat-Seng Chua
tl;dr: A standard contrastive loss in recommender systems, particularly for out-of-distribution tasks.
Contrastive Learning (CL) has achieved impressive performance in self-supervised learning tasks, showing superior generalization ability. Inspired by the success, adopting CL into collaborative filtering (CF) is prevailing in semi-supervised topK recommendations. The basic idea is to routinely conduct heuristic-based data augmentation and apply contrastive losses (e.g., InfoNCE) on the augmented views. Yet, some CF-tailored challenges make this adoption suboptimal, such as the issue of out-of-distribution, the risk of false negatives, and the nature of top-K evaluation. They necessitate the CL-based CF scheme to focus more on mining hard negatives and distinguishing false negatives from the vast unlabeled user-item interactions, for informative contrast signals. Worse still, there is limited understanding of contrastive loss in CF methods, especially w.r.t. its generalization ability. To bridge the gap, we delve into the reasons underpinning the success of contrastive loss in CF, and propose a principled Adversarial InfoNCE loss (AdvInfoNCE), which is a variant of InfoNCE, specially tailored for CF methods. AdvInfoNCE adaptively explores and assigns hardness to each negative instance in an adversarial fashion and further utilizes a fine-grained hardness-aware ranking criterion to empower the recommender’s generalization ability. Training CF models with AdvInfoNCE, we validate the effectiveness of AdvInfoNCE on both synthetic and real-world benchmark datasets, thus showing its generalization ability to mitigate out-of-distribution problems. Given the theoretical guarantees and empirical superiority of AdvInfoNCE over most contrastive loss functions, we advocate its adoption as a standard loss in recommender systems, particularly for the out-of-distribution tasks. Codes are available at https://github.com/LehengTHU/AdvInfoNCE.
Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Preetum Nakkiran
tl;dr: We theoretically characterize when (sub-optimally) optimizing a proper loss, as we do in DNNs, leads to a near-optimally calibrated predictor.
Optimizing proper loss functions is popularly believed to yield predictors with good calibration properties; the intuition being that for such losses, the global optimum is to predict the ground-truth probabilities, which is indeed calibrated. However, typical machine learning models are trained to approximately minimize loss over restricted families of predictors, that are unlikely to contain the ground truth. Under what circumstances does optimizing proper loss over a restricted family yield calibrated models? What precise calibration guarantees does it give? In this work, we provide a rigorous answer to these questions. We replace the global optimality with a local optimality condition stipulating that the (proper) loss of the predictor cannot be reduced much by post-processing its predictions with a certain family of Lipschitz functions. We show that any predictor with this local optimality satisfies smooth calibration as defined in [Kakade and Foster, 2008, Błasiok et al., 2023]. Local optimality is plausibly satisfied by well-trained DNNs, which suggests an explanation for why they are calibrated from proper loss minimization alone. Finally, we show that the connection between local optimality and calibration error goes both ways: nearly calibrated predictors are also nearly locally optimal.
Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar
tl;dr: We identify conditions under which confidence-based cascades may suceed or fail, present a theoretically optimal deferral rule, and study post hoc deferral schemes to improve upon confidence-base deferral.
Cascades are a classical strategy to enable inference cost to vary adaptively across samples, wherein a sequence of classifiers are invoked in turn. A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction. One simple deferral rule employs the confidence of the current classifier, e.g., based on the maximum predicted softmax probability. Despite being oblivious to the structure of the cascade --- e.g., not modelling the errors of downstream models --- such confidence-based deferral often works remarkably well in practice. In this paper, we seek to better understand the conditions under which confidence-based deferral may fail, and when alternate deferral strategies can perform better. We first present a theoretical characterisation of the optimal deferral rule, which precisely characterises settings under which confidence-based deferral may suffer. We then study post-hoc deferral mechanisms, and demonstrate they can significantly improve upon confidence-based deferral in settings where (i) downstream models are specialists that only work well on a subset of inputs, (ii) samples are subject to label noise, and (iii) there is distribution shift between the train and test set.
Su Zheng, Haoyu Yang, Binwu Zhu, Bei Yu, Martin D.F. Wong
tl;dr: LithoBench is a dataset and benchmarking platform for computational lithography, supporting lithography simulation and mask optimization.
Computational lithography provides algorithmic and mathematical support for resolution enhancement in optical lithography, which is the critical step in semiconductor manufacturing. The time-consuming lithography simulation and mask optimization processes limit the practical application of inverse lithography technology (ILT), a promising solution to the challenges of advanced-node lithography. Although various machine learning methods for ILT have shown promise for reducing the computational burden, this field is in lack of a dataset that can train the models thoroughly and evaluate the performance comprehensively. To boost the development of AI-driven computational lithography, we present the LithoBench dataset, a collection of circuit layout tiles for deep-learning-based lithography simulation and mask optimization. LithoBench consists of more than 120k tiles that are cropped from real circuit designs or synthesized according to the layout topologies of famous ILT testcases. The ground truths are generated by a famous lithography model in academia and an advanced ILT method. Based on the data, we provide a framework to design and evaluate deep neural networks (DNNs) with the data. The framework is used to benchmark state-of-the-art models on lithography simulation and mask optimization. We hope LithoBench can promote the research and development of computational lithography. LithoBench is available at https://anonymous.4open.science/r/lithobench-APPL.
Mengfan Xu, Diego Klabjan
We study a decentralized multi-agent multi-armed bandit problem in which multiple clients are connected by time dependent random graphs provided by an environment. The reward distributions of each arm vary across clients and rewards are generated independently over time by an environment based on distributions that include both sub-exponential and sub-gaussian distributions. Each client pulls an arm and communicates with neighbors based on the graph provided by the environment. The goal is to minimize the overall regret of the entire system through collaborations. To this end, we introduce a novel algorithmic framework, which first provides robust simulation methods for generating random graphs using rapidly mixing markov chains or the random graph model, and then combines an averaging-based consensus approach with a newly proposed weighting technique and the upper confidence bound to deliver a UCB-type solution. Our algorithms account for the randomness in the graphs, removing the conventional doubly stochasticity assumption, and only require the knowledge of the number of clients at initialization. We derive optimal instance-dependent regret upper bounds of order $\log{T}$ in both sub-gaussian and sub-exponential environments, and a nearly optimal instance-free regret upper bound of order $\sqrt{T}\log T$ up to a $\log T$ factor. Importantly, our regret bounds hold with high probability and capture graph randomness, whereas prior works consider expected regret under assumptions and require more stringent reward distributions.
Huy Nguyen, TrungTin Nguyen, Nhat Ho
Understanding the parameter estimation of softmax gating Gaussian mixture of experts has remained a long-standing open problem in the literature. It is mainly due to three fundamental theoretical challenges associated with the softmax gating function: (i) the identifiability only up to the translation of parameters; (ii) the intrinsic interaction via partial differential equations between the softmax gating and the expert functions in the Gaussian density; (iii) the complex dependence between the numerator and denominator of the conditional density of softmax gating Gaussian mixture of experts. We resolve these challenges by proposing novel Voronoi loss functions among parameters and establishing the convergence rates of maximum likelihood estimator (MLE) for solving parameter estimation in these models. When the true number of experts is unknown and over-specified, our findings show a connection between the convergence rate of the MLE and a solvability problem of a system of polynomial equations.
Junhyung Park, Simon Buchholz, Bernhard Schölkopf, Krikamol Muandet
tl;dr: We propose causal spaces, a measure-theoretic axiomatisation of causality.
Causality is a central concept in a wide range of research areas, yet there is still no universally agreed axiomatisation of causality. We view causality both as an extension of probability theory and as a study of what happens when one intervenes on a system, and argue in favour of taking Kolmogorov's measure-theoretic axiomatisation of probability as the starting point towards an axiomatisation of causality. To that end, we propose the notion of a causal space, consisting of a probability space along with a collection of transition probability kernels, called causal kernels, that encode the causal information of the space. Our proposed framework is not only rigorously grounded in measure theory, but it also sheds light on long-standing limitations of existing frameworks including, for example, cycles, latent variables and stochastic processes.
David Mayo, Jesse Cummings, Xinyu Lin, Dan Gutfreund, Boris Katz, Andrei Barbu
Humans outperform object recognizers despite the fact that models perform well on current datasets, including those explicitly designed to challenge machines with debiased images or distribution shift. This problem persists, in part, because we have no guidance on the absolute difficulty of an image or dataset making it hard to objectively assess progress toward human-level performance, to cover the range of human abilities, and to increase the challenge posed by a dataset. We develop a dataset difficulty metric MVT, Minimum Viewing Time, that addresses these three problems. Subjects view an image that flashes on screen and then classify the object in the image. Images that require brief flashes to recognize are easy, those which require seconds of viewing are hard. We compute the ImageNet and ObjectNet image difficulty distribution, which we find significantly undersamples hard images. Nearly 90% of current benchmark performance is derived from images that are easy for humans. Rather than hoping that we will make harder datasets, we can for the first time objectively guide dataset difficulty during development. We can also subset recognition performance as a function of difficulty: model performance drops precipitously while human performance remains stable. Difficulty provides a new lens through which to view model performance, one which uncovers new scaling laws: vision-language models stand out as being the most robust and human-like while all other techniques scale poorly. We release tools to automatically compute MVT, along with image sets which are tagged by difficulty. Objective image difficulty has practical applications – one can measure how hard a test set is before deploying a real-world system – and scientific applications such as discovering the neural correlates of image difficulty and enabling new object recognition techniques that eliminate the benchmark-vs- real-world performance gap.
Andrea Nascetti, RITU YADAV, Kirill Brodt, Qixun Qu, Hongwei Fan, Yuri Shendryk, Isha Shah, Christine Chung
tl;dr: A new benchmark dataset for large scale above ground biomass estimation using satellite multi-spectral and radar time series
Above Ground Biomass is an important variable as forests play a crucial role in mitigating climate change as they act as an efficient, natural and cost-effective carbon sink. Traditional field and airborne LiDAR measurements have been proven to provide reliable estimations of forest biomass. Nevertheless, the use of these techniques at a large scale can be challenging and expensive. Satellite data have been widely used as a valuable tool in estimating biomass on a global scale. However, the full potential of dense multi-modal satellite time series data, in combination with modern deep learning approaches, has yet to be fully explored. The aim of the "BioMassters" data challenge and benchmark dataset is to investigate the potential of multi-modal satellite data (Sentinel-1 SAR and Sentinel-2 MSI) to estimate forest biomass at a large scale using the Finnish Forest Centre's open forest and nature airborne LiDAR data as a reference. The performance of the top three baseline models shows the potential of deep learning to produce accurate and higher-resolution biomass maps. Our benchmark dataset is publically available at https://huggingface.co/datasets/nascetti-a/BioMassters (doi:10.57967/hf/1009) and the implementation of the top three winning models are available at https://github.com/drivendataorg/the-biomassters.
Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, Svitlana Vyetrenko
tl;dr: A set of generative models for synthetic time-series data that can satisfy soft and hard constraints.
Synthetic time series are often used in practical applications to augment the historical time series dataset, amplify the occurrence of rare events and also create counterfactual scenarios. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements for counterfactual time series generation. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including 'GuidedDiffTime', a guided diffusion model. We empirically evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively, and that 'GuidedDiffTime' does not require re-training for new constraints, resulting in a significant carbon footprint reduction, up to 92% w.r.t. existing deep learning methods.
Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, Nicolas Courty
tl;dr: A new upper bound of $W^2_2$ that is fast to compute and comes with a transport plan
Wasserstein distance (WD) and the associated optimal transport plan have been proven useful in many applications where probability measures are at stake. In this paper, we propose a new proxy of the squared WD, coined $\textnormal{min-SWGG}$, that is based on the transport map induced by an optimal one-dimensional projection of the two input distributions. We draw connections between $\textnormal{min-SWGG}$, and Wasserstein generalized geodesics in which the pivot measure is supported on a line. We notably provide a new closed form for the exact Wasserstein distance in the particular case of one of the distributions supported on a line allowing us to derive a fast computational scheme that is amenable to gradient descent optimization. We show that $\textnormal{min-SWGG}$, is an upper bound of WD and that it has a complexity similar to as Sliced-Wasserstein, with the additional feature of providing an associated transport plan. We also investigate some theoretical properties such as metricity, weak convergence, computational and topological properties. Empirical evidences support the benefits of $\textnormal{min-SWGG}$, in various contexts, from gradient flows, shape matching and image colorization, among others.
Zhengfei Kuang, Yunzhi Zhang, Hong-Xing Yu, Samir Agarwala, Shangzhe Wu, Jiajun Wu
tl;dr: We introduce a new real-world 3D object inverse rendering benchmark, with ground-truth 3D scans, multi-view images, and environment lighting of in-the-wild scenes.
We introduce Stanford-ORB, a new real-world 3D Object inverse Rendering Benchmark. Recent advances in inverse rendering have enabled a wide range of real-world applications in 3D content generation, moving rapidly from research and commercial use cases to consumer devices. While the results continue to improve, there is no real-world benchmark that can quantitatively assess and compare the performance of various inverse rendering methods. Existing real-world datasets typically only consist of the shape and multi-view images of objects, which are not sufficient for evaluating the quality of material recovery and object relighting. Methods capable of recovering material and lighting often resort to synthetic data for quantitative evaluation, which on the other hand does not guarantee generalization to complex real-world environments. We introduce a new dataset of real-world objects captured under a variety of natural scenes with ground-truth 3D scans, multi-view images, and environment lighting. Using this dataset, we establish the first comprehensive real-world evaluation benchmark for object inverse rendering tasks from in-the-wild scenes, and compare the performance of various existing methods. All data, code, and models can be accessed at https://stanfordorb.github.io/
Krishna Pillutla, Galen Andrew, Peter Kairouz, Hugh Brendan McMahan, Alina Oprea, Sewoong Oh
tl;dr: We present a rigorous methodology for auditing DP with multiple random canaries, based on an equivalent "lifted" definition of DP, multiple dependent hypothesis tests, and novel adaptive confidence intervals.
We present a rigorous methodology for auditing differentially private machine learning by adding multiple carefully designed examples called canaries. We take a first principles approach based on three key components. First, we introduce Lifted Differential Privacy (LiDP) that expands the definition of differential privacy to handle randomized datasets. This gives us the freedom to design randomized canaries. Second, we audit LiDP by trying to distinguish between the model trained with $K$ canaries versus $K-1$ canaries in the dataset, leaving one canary out. By drawing the canaries i.i.d., LiDP can leverage the symmetry in the design and reuse each privately trained model to run multiple statistical tests, one for each canary. Third, we introduce novel confidence intervals that take advantage of the multiple test statistics by adapting to the empirical higher-order correlations. Together, this new recipe demonstrates significant improvements in sample complexity, both theoretically and empirically, using synthetic and real data. Further, recent advances in designing stronger canaries can be readily incorporated in the new framework.
Jiachen T. Wang, Saeed Mahloujifar, Tong Wu, Ruoxi Jia, Prateek Mittal
tl;dr: We developed a new differential privacy paradigm which enables the safe use of privacy parameter estimate.
Bounding privacy leakage over compositions, i.e., privacy accounting, is a key challenge in differential privacy (DP). However, the privacy parameter ($\varepsilon$ or $\delta$) is often easy to estimate but hard to bound. In this paper, we propose a new differential privacy paradigm called estimate-verify-release (EVR), which tackles the challenges of providing a strict upper bound for the privacy parameter in DP compositions by converting an *estimate* of privacy parameter into a formal guarantee. The EVR paradigm first verifies whether the mechanism meets the *estimated* privacy guarantee, and then releases the query output based on the verification result. The core component of the EVR is privacy verification. We develop a randomized privacy verifier using Monte Carlo (MC) technique. Furthermore, we propose an MC-based DP accountant that outperforms existing DP accounting techniques in terms of accuracy and efficiency. MC-based DP verifier and accountant is applicable to an important and commonly used class of DP algorithms, including the famous DP-SGD. An empirical evaluation shows the proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
Sokhna Diarra Mbacke, Florence Clerc, Pascal Germain
tl;dr: We provide reconstruction, regeneration and generation guarantees for VAEs using PAC-Bayesian Theory
Since their inception, Variational Autoencoders (VAEs) have become central in machine learning. Despite their widespread use, numerous questions regarding their theoretical properties remain open. Using PAC-Bayesian theory, this work develops statistical guarantees for VAEs. First, we derive the first PAC-Bayesian bound for posterior distributions conditioned on individual samples from the data-generating distribution. Then, we utilize this result to develop generalization guarantees for the VAE's reconstruction loss, as well as upper bounds on the distance between the input and the regenerated distributions. More importantly, we provide upper bounds on the Wasserstein distance between the input distribution and the distribution defined by the VAE's generative model.
Tianyu Liu, Yuge Wang, Zhitao Ying, Hongyu Zhao
tl;dr: We propose MuSe-GNN to effectively generate meaningful gene embeddings.
Discovering genes with similar functions across diverse biomedical contexts poses a significant challenge in gene representation learning due to data heterogeneity. In this study, we resolve this problem by introducing a novel model called Multimodal Similarity Learning Graph Neural Network, which combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data. Leveraging 82 training datasets from 10 tissues, three sequencing techniques, and three species, we create informative graph structures for model training and gene representations generation, while incorporating regularization with weighted similarity learning and contrastive learning to learn cross-data gene-gene relationships. This novel design ensures that we can offer gene representations containing functional similarity across different contexts in a joint space. Comprehensive benchmarking analysis shows our model's capacity to effectively capture gene function similarity across multiple modalities, outperforming state-of-the-art methods in gene representation learning by up to $\textbf{100.4}$%. Moreover, we employ bioinformatics tools in conjunction with gene representations to uncover pathway enrichment, regulation causal networks, and functions of disease-associated genes. Therefore, our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
Tongtong Fang, Nan Lu, Gang Niu, Masashi Sugiyama
tl;dr: We generalize importance weighting for distribution shift problems so that we no longer require the support of the test distribution must be covered by the support of the training distribution.
Distribution shift (DS) may have two levels: the distribution itself changes, and the support (i.e., the set where the probability density is non-zero) also changes. When considering the support change between the training and test distributions, there can be four cases: (i) they exactly match; (ii) the training support is wider (and thus covers the test support); (iii) the test support is wider; (iv) they partially overlap. Existing methods are good at cases (i) and (ii), while cases (iii) and (iv) are more common nowadays but still under-explored. In this paper, we generalize importance weighting (IW), a golden solver for cases (i) and (ii), to a universal solver for all cases. Specifically, we first investigate why IW might fail in cases (iii) and (iv); based on the findings, we propose generalized IW (GIW) that could handle cases (iii) and (iv) and would reduce to IW in cases (i) and (ii). In GIW, the test support is split into an in-training (IT) part and an out-of-training (OOT) part, and the expected risk is decomposed into a weighted classification term over the IT part and a standard classification term over the OOT part, which guarantees the risk consistency of GIW. Then, the implementation of GIW consists of three components: (a) the split of validation data is carried out by the one-class support vector machine, (b) the first term of the empirical risk can be handled by any IW algorithm given training data and IT validation data, and (c) the second term just involves OOT validation data. Experiments demonstrate that GIW is a universal solver for DS problems, outperforming IW methods in cases (iii) and (iv).
Xiao-Yue Gong, Mark Sellke
tl;dr: We obtain sharp bounds for the sample complexity of pure exploration bandits with infinitely many arms.
We study pure exploration with infinitely many bandit arms generated \iid from an unknown distribution. Our goal is to efficiently select a single high quality arm whose average reward is, with probability $1-\delta$, within $\varepsilon$ of being with the top $\eta$-fraction of arms; this is a natural adaptation of the classical PAC guarantee for infinite action sets. We consider both the fixed confidence and fixed budget settings, aiming respectively for optimal \emph{expected} and \emph{fixed} sample complexity. For fixed confidence, we give an algorithm with expected sample complexity $O\left(\frac{\log (1/\eta)\log (1/\delta)}{\eta\varepsilon^2}\right)$. This is optimal except for the $\log (1/\eta)$ factor, and the $\delta$-dependence closes a quadratic gap in the literature. For fixed budget, we show the asymptotically optimal sample complexity as $\delta\to 0$ is $c^{-1}\log(1/\delta)\big(\log\log(1/\delta)\big)^2$ to leading order; equivalently, the optimal failure probability with exactly $N$ samples decays as $\exp\big(-(1\pm o(1))\frac{cN}{\log^2 N}\big)$. The value of $c$ depends explicitly on the problem parameters (including the unknown arm distribution) through a certain Fisher information distance. Even the strictly super-linear dependence on $\log(1/\delta)$ was not known and resolves a question of Grossman-Moshkovitz (FOCS 2015).
Trung Dang, Jasper C.H. Lee, Maoyuan Song, Paul Valiant
There is growing interest in improving our algorithmic understanding of fundamental statistical problems such as mean estimation, driven by the goal of understanding the fundamental limits of what we can extract from limited and valuable data. The state of the art results for mean estimation in $\mathbb{R}$ are 1) the optimal sub-Gaussian mean estimator by [Lee and Valiant, 2022], attaining the optimal sub-Gaussian error constant for all distributions with finite but unknown variance, and 2) the analysis of the median-of-means algorithm by [Bubeck, Cesa-Bianchi and Lugosi, 2013] and a matching lower bound by [Devroye, Lerasle, Lugosi, and Oliveira, 2016], characterizing the big-O optimal errors for distributions that have tails heavy enough that only a $1+\alpha$ moment exists for some $\alpha \in (0,1)$. Both of these results, however, are optimal only in the worst case. Motivated by the recent effort in the community to go "beyond the worst-case analysis" of algorithms, we initiate the fine-grained study of the mean estimation problem: Is it possible for algorithms to leverage *beneficial* features/quirks of their input distribution to *beat* the sub-Gaussian rate, without explicit knowledge of these features? We resolve this question, finding an unexpectedly nuanced answer: "Yes in limited regimes, but in general no". Given a distribution $p$, assuming *only* that it has a finite mean and absent any additional assumptions, we show how to construct a distribution $q_{n,\delta}$ such that the means of $p$ and $q$ are well-separated, yet $p$ and $q$ are impossible to distinguish with $n$ samples with probability $1-\delta$, and $q$ further preserves the finiteness of moments of $p$. Moreover, the variance of $q$ is at most twice the variance of $p$ if it exists. The main consequence of our result is that, no reasonable estimator can asymptotically achieve better than the sub-Gaussian error rate for any distribution, up to constant factors, which matches the worst-case result of [Lee and Valiant, 2022]. More generally, we introduce a new definitional framework to analyze the fine-grained optimality of algorithms, which we call "neighborhood optimality", interpolating between the unattainably strong "instance optimality" and the trivially weak admissibility/Pareto optimality definitions. As an application of the new framework, we show that the median-of-means algorithm is neighborhood optimal, up to constant factors. It is an open question to find a neighborhood-optimal estimator *without* constant factor slackness.
Wei Wang, Lei Feng, Yuchen Jiang, Gang Niu, Min-Ling Zhang, Masashi Sugiyama
tl;dr: The difference of confidence labels on unlabeled data pairs, as a novel type of weak supervision, is sufficient to train binary classifiers with theoretical guarantees.
Recently, learning with soft labels has been shown to achieve better performance than learning with hard labels in terms of model generalization, calibration, and robustness. However, collecting pointwise labeling confidence for all training examples can be challenging and time-consuming in real-world scenarios. This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification. Instead of pointwise labeling confidence, we are given only unlabeled data pairs with confidence difference that specifies the difference in the probabilities of being positive. We propose a risk-consistent approach to tackle this problem and show that the estimation error bound achieves the optimal convergence rate. We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven. Extensive experiments on benchmark data sets and a real-world recommender system data set validate the effectiveness of our proposed approaches in exploiting the supervision information of the confidence difference.
Ang Li, Yifei Wang, Yiwen Guo, Yisen Wang
tl;dr: Non-robust features are not cross-paradigmly useful features.
The existence of adversarial examples has been a mystery for years and attracted much interest. A well-known theory by \citet{ilyas2019adversarial} explains adversarial vulnerability from a data perspective by showing that one can extract non-robust features from adversarial examples and these features alone are useful for classification. However, the explanation remains quite counter-intuitive since non-robust features are mostly noise features to humans. In this paper, we re-examine the theory from a larger context by incorporating multiple learning paradigms. Notably, we find that contrary to their good usefulness under supervised learning, non-robust features attain poor usefulness when transferred to other self-supervised learning paradigms, such as contrastive learning, masked image modeling, and diffusion models. It reveals that non-robust features are not really as useful as robust or natural features that enjoy good transferability between these paradigms. Meanwhile, for robustness, we also show that naturally trained encoders from robust features are largely non-robust under AutoAttack. Our cross-paradigm examination suggests that the non-robust features are not really useful but more like paradigm-wise shortcuts, and robust features alone might be insufficient to attain reliable model robustness. Code is available at \url{https://github.com/PKU-ML/AdvNotRealFeatures}.
Liang Yang, Runjie Shi, Qiuliang Zhang, Bingxin Niu, Zhen Wang, Xiaochun Cao, Chuan Wang
Self-supervised learning is introduced to train graph neural networks (GNNs) by employing propagation-based GNNs designed for semi-supervised learning tasks. Unfortunately, this common choice tends to cause two serious issues. Firstly, global parameters cause the model lack the ability to capture the local property. Secondly, it is difficult to handle networks beyond homophily without label information. This paper tends to break through the common choice of employing propagation-based GNNs, which aggregate representations of nodes belonging to different classes and tend to lose discriminative information. If the propagation in each ego-network is just between the nodes from the same class, the obtained representation matrix should follow the low-rank characteristic. To meet this requirement, this paper proposes the Low-Rank Decomposition-based GNNs (LRD-GNN-Matrix) by employing Low-Rank Decomposition to the attribute matrix. Furthermore, to incorporate long-distance information, Low-Rank Tensor Decomposition-based GNN (LRD-GNN-Tensor) is proposed by constructing the node attribute tensor from selected similar ego-networks and performing Low-Rank Tensor Decomposition. The employed tensor nuclear norm facilitates the capture of the long-distance relationship between original and selected similar ego-networks. Extensive experiments demonstrate the superior performance and the robustness of LRD-GNNs.
Xinyu Tang, Ashwinee Panda, Vikash Sehwag, Prateek Mittal
tl;dr: We provide new SOTA methods for DP image classification when training from scratch by using image priors
In privacy-preserving machine learning, differentially private stochastic gradient descent (DP-SGD) performs worse than SGD due to per-sample gradient clipping and noise addition. A recent focus in private learning research is improving the performance of DP-SGD on private data by incorporating priors that are learned on real-world public data. In this work, we explore how we can improve the privacy-utility tradeoff of DP-SGD by learning priors from images generated by random processes and transferring these priors to private data. We propose DP-RandP, a three-phase approach. We attain new state-of-the-art accuracy when training from scratch on CIFAR10, CIFAR100, MedMNIST and ImageNet for a range of privacy budgets $\\varepsilon \\in [1, 8]$. In particular, we improve the previous best reported accuracy on CIFAR10 from $60.6 \\%$ to $72.3 \\%$ for $\\varepsilon=1$.
weitao Du, Yuanqi Du, Limei Wang, Dieqiao Feng, Guifeng Wang, Shuiwang Ji, Carla P Gomes, Zhi-Ming Ma
Geometric deep learning enables the encoding of physical symmetries in modeling 3D objects. Despite rapid progress in encoding 3D symmetries into Graph Neural Networks (GNNs), a comprehensive evaluation of the expressiveness of these network architectures through a local-to-global analysis lacks today. In this paper, we propose a local hierarchy of 3D isomorphism to evaluate the expressive power of equivariant GNNs and investigate the process of representing global geometric information from local patches. Our work leads to two crucial modules for designing expressive and efficient geometric GNNs; namely local substructure encoding (\textbf{LSE}) and frame transition encoding (\textbf{FTE}). To demonstrate the applicability of our theory, we propose LEFTNet which effectively implements these modules and achieves state-of-the-art performance on both scalar-valued and vector-valued molecular property prediction tasks. We further point out future design space for 3D equivariant graph neural networks. Our codes are available at \url{https://github.com/yuanqidu/LeftNet}.
Nataly Brukhim, Miroslav Dudík, Aldo Pacchiano, Robert E. Schapire
We study an abstract framework for interactive learning called interactive estimation in which the goal is to estimate a target from its ``similarity'' to points queried by the learner. We introduce a combinatorial measure called Dissimilarity dimension which largely captures learnability in our model. We present a simple, general, and broadly-applicable algorithm, for which we obtain both regret and PAC generalization bounds that are polynomial in the new dimension. We show that our framework subsumes and thereby unifies two classic learning models: statistical-query learning and structured bandits. We also delineate how the Dissimilarity dimension is related to well-known parameters for both frameworks, in some cases yielding significantly improved analyses.
Zifan Wang, Saranya Vijayakumar, Kaiji Lu, Vijay Ganesh, Somesh Jha, Matt Fredrikson
tl;dr: We present a set of technique for integrating Satisfiability Modulo Theories (SMT) solvers into the forward and backward passes of a deep network layer, called SMTLayer
Recent techniques that integrate solver layers into Deep Neural Networks (DNNs) have shown promise in bridging a long-standing gap between inductive learning and symbolic reasoning techniques. In this paper we present a set of techniques for integrating Satisfiability Modulo Theories (SMT) solvers into the forward and backward passes of a deep network layer, called SMTLayer. Using this approach, one can encode rich domain knowledge into the network in the form of mathematical formulas. In the forward pass, the solver uses symbols produced by prior layers, along with these formulas, to construct inferences; in the backward pass, the solver informs updates to the network, driving it towards representations that are compatible with the solver's theory. Notably, the solver need not be differentiable. We implement SMTLayer as a Pytorch module, and our empirical results show that it leads to models that 1) require fewer training samples than conventional models, 2) that are robust to certain types of covariate shift, and 3) that ultimately learn representations that are consistent with symbolic knowledge, and thus naturally interpretable.
Zhun Deng, Thomas P Zollo, Jake Snell, Toniann Pitassi, Richard Zemel
Explicit finite-sample statistical guarantees on model performance are an important ingredient in responsible machine learning. Previous work has focused mainly on bounding either the expected loss of a predictor or the probability that an individual prediction will incur a loss value in a specified range. However, for many high-stakes applications it is crucial to understand and control the \textit{dispersion} of a loss distribution, or the extent to which different members of a population experience unequal effects of algorithmic decisions. We initiate the study of distribution-free control of statistical dispersion measures with societal implications and propose a simple yet flexible framework that allows us to handle a much richer class of statistical functionals beyond previous work. Our methods are verified through experiments in toxic comment detection, medical imaging, and film recommendation.
Natalie Frank, Jonathan Niles-Weed
tl;dr: We prove necessary and sufficient conditions for the statistical consistency of surrogate risks in the adversarial setting
We study the consistency of surrogate risks for robust binary classification. It is common to learn robust classifiers by adversarial training, which seeks to minimize the expected $0$-$1$ loss when each example can be maliciously corrupted within a small ball. We give a simple and complete characterization of the set of surrogate loss functions that are \emph{consistent}, i.e., that can replace the $0$-$1$ loss without affecting the minimizing sequences of the original adversarial risk, for any data distribution. We also prove a quantitative version of adversarial consistency for the $\rho$-margin loss. Our results reveal that the class of adversarially consistent surrogates is substantially smaller than in the standard setting, where many common surrogates are known to be consistent.
Luning Sun, Xu Han, Han Gao, Jian-Xun Wang, Liping Liu
tl;dr: Propose a unified framework to predict the behavior of both deterministic and stochastic systems by generative model
Accurate prediction of dynamical systems in unstructured meshes has recently shown successes in scientific simulations. Many dynamical systems have a nonnegligible level of stochasticity introduced by various factors (e.g. chaoticity), so there is a need for a unified framework that captures both deterministic and stochastic components in the rollouts of these systems. Inspired by regeneration learning, we propose a new model that combines generative and sequential networks to model dynamical systems. Specifically, we use an autoencoder to learn compact representations of full-space physical variables in a low-dimensional space. We then integrate a transformer with a conditional normalizing flow model to model the temporal sequence of latent representations. We evaluate the new model in both deterministic and stochastic systems. The model outperforms several competitive baseline models and makes more accurate predictions of deterministic systems. Its own prediction error is also reflected in its uncertainty estimations. When predicting stochastic systems, the proposed model generates high-quality rollout samples. The mean and variance of these samples well match the statistics of samples computed from expensive numerical simulations.
Yuling Yao, Justin Domke
tl;dr: We use a classifier+statistical feature approach to diagnose Bayesian computations, applicable to MCMC, variational and simulation based inference. We provide a high-power test and a divergence estimate.
To check the accuracy of Bayesian computations, it is common to use rank-based simulation-based calibration (SBC). However, SBC has drawbacks: The test statistic is somewhat ad-hoc, interactions are difficult to examine, multiple testing is a challenge, and the resulting p-value is not a divergence metric. We propose to replace the marginal rank test with a flexible classification approach that learns test statistics from data. This measure typically has a higher statistical power than the SBC test and returns an interpretable divergence measure of miscalibration, computed from classification accuracy. This approach can be used with different data generating processes to address simulation-based inference or traditional inference methods like Markov chain Monte Carlo or variational inference. We illustrate an automated implementation using neural networks and statistically-inspired features, and validate the method with numerical and real data experiments.
Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, Philippe Rigollet
tl;dr: We mathematically prove that trained Transformers cluster in long time.
Viewing Transformers as interacting particle systems, we describe the geometry of learned representations when the weights are not time-dependent. We show that particles, representing tokens, tend to cluster toward particular limiting objects as time tends to infinity. Using techniques from dynamical systems and partial differential equations, we show that type of limiting object that emerges depends on the spectrum of the value matrix. Additionally, in the one-dimensional case we prove that the self-attention matrix converges to a low-rank Boolean matrix. The combination of these results mathematically confirms the empirical observation made by Vaswani et al. [ VSP`17 ] that leaders appear in a sequence of tokens when processed by Transformers.
Sihui Dai, Wenxin Ding, Arjun Nitin Bhagoji, Daniel Cullina, Haitao Zheng, Ben Y. Zhao, Prateek Mittal
tl;dr: Find and evaluate several methods to bound the loss of optimal multi-class classifiers against test-time attacks
Finding classifiers robust to adversarial examples is critical for their safe deployment. Determining the robustness of the best possible classifier under a given threat model for a fixed data distribution and comparing it to that achieved by state-of-the-art training methods is thus an important diagnostic tool. In this paper, we find achievable information-theoretic lower bounds on robust loss in the presence of a test-time attacker for *multi-class classifiers on any discrete dataset*. We provide a general framework for finding the optimal $0-1$ loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints. The prohibitive cost of this formulation in practice leads us to formulate other variants of the attacker-classifier game that more efficiently determine the range of the optimal loss. Our valuation shows, for the first time, an analysis of the gap to optimal robustness for classifiers in the multi-class setting on benchmark datasets.
Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause
tl;dr: We develop a novel framework that guarantees last-iterate convergence in Wasserstein distance for many advanced sampling algorithms at once.
Non-convex sampling is a key challenge in machine learning, central to non-convex optimization in deep learning as well as to approximate probabilistic inference. Despite its significance, theoretically there remain some important challenges: Existing guarantees suffer from the drawback of lacking guarantees for the last-iterates, and little is known beyond the elementary schemes of stochastic gradient Langevin dynamics. To address these issues, we develop a novel framework that lifts the above issues by harnessing several tools from the theory of dynamical systems. Our key result is that, for a large class of state-of-the-art sampling schemes, their last-iterate convergence in Wasserstein distances can be reduced to the study of their continuous-time counterparts, which is much better understood. Coupled with standard assumptions of MCMC sampling, our theory immediately yields the last-iterate Wasserstein convergence of many advanced sampling schemes such as mirror Langevin, proximal, randomized mid-point, and Runge-Kutta methods.
An Thai Le, Georgia Chalvatzaki, Armin Biess, Jan Peters
tl;dr: The paper proposes a highly parallelizable, efficient gradient-free update rule formulated as an Optimal Transport problem, applying to trajectory optimization for optimizing a batch of high-dimensional trajectories on multiple non-convex objectives.
Motion planning is still an open problem for many disciplines, e.g., robotics, autonomous driving, due to their need for high computational resources that hinder real-time, efficient decision-making. A class of methods striving to provide smooth solutions is gradient-based trajectory optimization. However, those methods usually suffer from bad local minima, while for many settings, they may be inapplicable due to the absence of easy-to-access gradients of the optimization objectives. In response to these issues, we introduce Motion Planning via Optimal Transport (MPOT)---a \textit{gradient-free} method that optimizes a batch of smooth trajectories over highly nonlinear costs, even for high-dimensional tasks, while imposing smoothness through a Gaussian Process dynamics prior via the planning-as-inference perspective. To facilitate batch trajectory optimization, we introduce an original zero-order and highly-parallelizable update rule----the Sinkhorn Step, which uses the regular polytope family for its search directions. Each regular polytope, centered on trajectory waypoints, serves as a local cost-probing neighborhood, acting as a \textit{trust region} where the Sinkhorn Step ``transports'' local waypoints toward low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing parameters toward local minima regions of non-convex objective functions. We then show the efficiency of MPOT in a range of problems from low-dimensional point-mass navigation to high-dimensional whole-body robot motion planning, evincing its superiority compared to popular motion planners, paving the way for new applications of optimal transport in motion planning.
Matthias Minderer, Alexey A. Gritsenko, Neil Houlsby
tl;dr: We scale self-training for open-vocabulary object detection to billions of examples, leading to massive improvements in detection performance.
Open-vocabulary object detection has benefited greatly from pretrained vision-language models, but is still limited by the amount of available detection training data. While detection training data can be expanded by using Web image-text pairs as weak supervision, this has not been done at scales comparable to image-level pretraining. Here, we scale up detection data with self-training, which uses an existing detector to generate pseudo-box annotations on image-text pairs. Major challenges in scaling self-training are the choice of label space, pseudo-annotation filtering, and training efficiency. We present the OWLv2 model and OWL-ST self-training recipe, which address these challenges. OWLv2 surpasses the performance of previous state-of-the-art open-vocabulary detectors already at comparable training scales (~10M examples). However, with OWL-ST, we can scale to over 1B examples, yielding further large improvement: With an L/14 architecture, OWL-ST improves AP on LVIS rare classes, for which the model has seen no human box annotations, from 31.2% to 44.6% (43% relative improvement). OWL-ST unlocks Web-scale training for open-world localization, similar to what has been seen for image classification and language modelling. Code and checkpoints are available on GitHub.
Edward Raff, James Holt
tl;dr: Most multiple instance learning papers don't check if they respect the multiple instance assumption. Some simple unit tests detect this.
Multiple Instance Learning (MIL) is a sub-domain of classification problems with positive and negative labels and a "bag" of inputs, where the label is positive if and only if a positive element is contained within the bag, and otherwise is negative. Training in this context requires associating the bag-wide label to instance-level information, and implicitly contains a causal assumption and asymmetry to the task (i.e., you can't swap the labels without changing the semantics). MIL problems occur in healthcare (one malignant cell indicates cancer), cyber security (one malicious executable makes an infected computer), and many other tasks. In this work, we examine five of the most prominent deep-MIL models and find that none of them respects the standard MIL assumption. They are able to learn anti-correlated instances, i.e., defaulting to "positive" labels until seeing a negative counter-example, which should not be possible for a correct MIL model. We suspect that enhancements and other works derived from these models will share the same issue. In any context in which these models are being used, this creates the potential for learning incorrect models, which creates risk of operational failure. We identify and demonstrate this problem via a proposed ``algorithmic unit test'', where we create synthetic datasets that can be solved by a MIL respecting model, and which clearly reveal learning that violates MIL assumptions. The five evaluated methods each fail one or more of these tests. This provides a model-agnostic way to identify violations of modeling assumptions, which we hope will be useful for future development and evaluation of MIL models.
Milad Sefidgaran, Abdellatif Zaidi, Piotr Krasnowski
tl;dr: We derive the first generalization guarantee for the representation learning in terms of the minimum description length of the representations (latent variables).
A major challenge in designing efficient statistical supervised learning algorithms is finding representations that perform well not only on available training samples but also on unseen data. While the study of representation learning has spurred much interest, most existing such approaches are heuristic; and very little is known about theoretical generalization guarantees. For example, the information bottleneck method seeks a good generalization by finding a minimal description of the input that is maximally informative about the label variable, where minimality and informativeness are both measured by Shannon’s mutual information. In this paper, we establish a compressibility framework that allows us to derive upper bounds on the generalization error of a representation learning algorithm in terms of the "Minimum Description Length'' (MDL) of the labels or the latent variables (representations). Rather than the mutual information between the encoder’s input and the representation, which is often believed to reflect the algorithm’s generalization capability in the related literature but in fact, falls short of doing so, our new bounds involve the "multi-letter" relative entropy between the distribution of the representations (or labels) of the training and test sets and a fixed prior. In particular, these new bounds reflect the structure of the encoder and are not vacuous for deterministic algorithms. Our compressibility approach, which is information-theoretic in nature, builds upon that of Blum-Langford for PAC-MDL bounds and introduces two essential ingredients: block-coding and lossy-compression. The latter allows our approach to subsume the so-called geometrical compressibility as a special case. To the best knowledge of the authors, the established generalization bounds are the first of their kind for Information Bottleneck type encoders and representation learning. Finally, we partly exploit the theoretical results by introducing a new data-dependent prior. Numerical simulations illustrate the advantages of well-chosen such priors over classical priors used in IB.
Guy Kornowski, Gilad Yehudai, Ohad Shamir
tl;dr: We prove tempered and benign overfitting for ReLU NNs in various settings
Overparameterized neural networks (NNs) are observed to generalize well even when trained to perfectly fit noisy data. This phenomenon motivated a large body of work on "benign overfitting", where interpolating predictors achieve near-optimal performance. Recently, it was conjectured and empirically observed that the behavior of NNs is often better described as "tempered overfitting", where the performance is non-optimal yet also non-trivial, and degrades as a function of the noise level. However, a theoretical justification of this claim for non-linear NNs has been lacking so far. In this work, we provide several results that aim at bridging these complementing views. We study a simple classification setting with 2-layer ReLU NNs, and prove that under various assumptions, the type of overfitting transitions from tempered in the extreme case of one-dimensional data, to benign in high dimensions. Thus, we show that the input dimension has a crucial role on the overfitting profile in this setting, which we also validate empirically for intermediate dimensions. Overall, our results shed light on the intricate connections between the dimension, sample size, architecture and training algorithm on the one hand, and the type of resulting overfitting on the other hand.
Omar Chehab, Aapo Hyvarinen, Andrej Risteski
Recent research has developed several Monte Carlo methods for estimating the normalization constant (partition function) based on the idea of annealing. This means sampling successively from a path of distributions which interpolate between a tractable "proposal" distribution and the unnormalized "target" distribution. Prominent estimators in this family include annealed importance sampling and annealed noise-contrastive estimation (NCE). Such methods hinge on a number of design choices: which estimator to use, which path of distributions to use and whether to use a path at all; so far, there is no definitive theory on which choices are efficient. Here, we evaluate each design choice by the asymptotic estimation error it produces. First, we show that using NCE is more efficient than the importance sampling estimator, but in the limit of infinitesimal path steps, the difference vanishes. Second, we find that using the geometric path brings down the estimation error from an exponential to a polynomial function of the parameter distance between the target and proposal distributions. Third, we find that the arithmetic path, while rarely used, can offer optimality properties over the universally-used geometric path. In fact, in a particular limit, the optimal path is arithmetic. Based on this theory, we finally propose a two-step estimator to approximate the optimal path in an efficient way.
Zhuoping Zhou, Davoud Ataee Tarzanagh, Bojian Hou, Boning Tong, Jia Xu, Yanbo Feng, Qi Long, Li Shen
tl;dr: The paper introduces a framework to address fairness and bias in Canonical Correlation Analysis, ensuring comparable correlation levels across groups without sacrificing accuracy.
This paper investigates fairness and bias in Canonical Correlation Analysis (CCA), a widely used statistical technique for examining the relationship between two sets of variables. We present a framework that alleviates unfairness by minimizing the correlation disparity error associated with protected attributes. Our approach enables the CCA model to learn global projection matrices from all data points while ensuring that these matrices yield comparable correlation levels to group-specific projection matrices. Experimental evaluation on both synthetic and real-world datasets demonstrates the efficacy of our method in reducing unfairness without compromising CCA model accuracy. These findings emphasize the importance of considering fairness in CCA applications to real-world problems.
Huikang Liu, Xiao Li, Anthony Man-Cho So
tl;dr: We introduce ReSync algorithm for solving robust rotation synchronization and provide strong theoretical guarantees.
This work presents ReSync, a Riemannian subgradient-based algorithm for solving the robust rotation synchronization problem, which arises in various engineering applications. ReSync solves a least-unsquared minimization formulation over the rotation group, which is nonsmooth and nonconvex, and aims at recovering the underlying rotations directly. We provide strong theoretical guarantees for ReSync under the random corruption setting. Specifically, we first show that the initialization procedure of ReSync yields a proper initial point that lies in a local region around the ground-truth rotations. We next establish the weak sharpness property of the aforementioned formulation and then utilize this property to derive the local linear convergence of ReSync to the ground-truth rotations. By combining these guarantees, we conclude that ReSync converges linearly to the ground-truth rotations under appropriate conditions. Experiment results demonstrate the effectiveness of ReSync.
Soichiro Kumano, Hiroshi Kera, Toshihiko Yamasaki
tl;dr: We propose a new framework based on mean field theory and analyze adversarial training theoretically.
Although adversarial training is known to be effective against adversarial examples, training dynamics are not well understood. In this study, we present the first theoretical analysis of adversarial training in random deep neural networks without any assumptions on data distributions. We introduce a new theoretical framework based on mean field theory, which addresses the limitations of existing mean field-based approaches. Based on the framework, we derive the (empirically tight) upper bounds of $\ell_q$ norm-based adversarial loss with $\ell_p$ norm-based adversarial examples for various values of $p$ and $q$. Moreover, we prove that networks without shortcuts are generally not adversarially trainable and that adversarial training reduces network capacity. We also show that the network width alleviates these issues. Furthermore, the various impacts of input and output dimensions on the upper bounds and time evolution of weight variance are presented.
Lothar Narins, Andrew T Scott, Aakash Gautam, Anagha Kulkarni, Mar Castanon, Benjamin Kao, Shasta Ihorn, Yue-Ting Siu, James M Mason, Alexander Mario Blum, Ilmi Yoon
We present a new high-quality validated image caption rating (VICR) dataset. How well a caption fits an image can be difficult to assess due to the subjective nature of caption quality. How do we evaluate whether a caption is good? We generated a new dataset to help answer this question by using our new image caption rating system, which consists of a novel robust rating scale and gamified approach to gathering human ratings. We show that our approach is consistent and teachable. 113 participants were involved in generating the dataset, which is composed of 68,217 ratings among 15,646 image-caption pairs. Our new dataset has greater inter-rater agreement than the state of the art, and custom machine learning rating predictors that were trained on our dataset outperform previous metrics. We improve over Flickr8k-Expert in Kendall's $W$ by 12\% and in Fleiss' $\kappa$ by 19\%, and thus provide a new benchmark dataset for image caption rating.
Yanhui Guo, Xinxin Zuo, Peng Dai, Juwei Lu, Xiaolin Wu, Li Cheng, Youliang Yan, Songcen Xu, Xiaofei Wu
tl;dr: Text-driven high-quality 3D-consistent texture generation for mesh retexturing
This paper presents Decorate3D, a versatile and user-friendly method for the creation and editing of 3D objects using images. Decorate3D models a real-world object of interest by neural radiance field (NeRF) and decomposes the NeRF representation into an explicit mesh representation, a view-dependent texture, and a diffuse UV texture. Subsequently, users can either manually edit the UV or provide a prompt for the automatic generation of a new 3D-consistent texture. To achieve high-quality 3D texture generation, we propose a structure-aware score distillation sampling method to optimize a neural UV texture based on user-defined text and empower an image diffusion model with 3D-consistent generation capability. Furthermore, we introduce a few-view resampling training method and utilize a super-resolution model to obtain refined high-resolution UV textures (2048$\times$2048) for 3D texturing. Extensive experiments collectively validate the superior performance of Decorate3D in retexturing real-world 3D objects. Project page: https://decorate3d.github.io/Decorate3D/.
Cenk Baykal, Dylan J Cutler, Nishanth Dikkala, Nikhil Ghosh, Rina Panigrahy, Xin Wang
tl;dr: We introduce a method to increase the capacity of modern transformers without significantly increasing the computational burden.
It has been well established that increasing scale in deep transformer networks leads to improved quality and performance. However, this increase in scale often comes with prohibitive increases in compute cost and inference latency. We introduce Alternating Updates (AltUp), a simple-to-implement method to increase a model's capacity without the computational burden. AltUp enables the widening of the learned representation, i.e., the token embedding, while only incurring a negligible increase in latency. AltUp achieves this by working on a subblock of the widened representation at each layer and using a predict-and-correct mechanism to update the inactivated blocks. We present extensions of AltUp, such as its applicability to the sequence dimension, and demonstrate how AltUp can be synergistically combined with existing approaches, such as Sparse Mixture-of-Experts models, to obtain efficient models with even higher capacity. Our experiments on benchmark transformer models and language tasks demonstrate the consistent effectiveness of AltUp on a diverse set of scenarios. Notably, on SuperGLUE and SQuAD benchmarks, AltUp enables up to $87\%$ speedup relative to the dense baselines at the same accuracy.
Sifan Liu
tl;dr: This paper proposes a method for applying quasi-random numbers to Langevin Monte Carlo algorithms.
Langevin Monte Carlo (LMC) and its stochastic gradient versions are powerful algorithms for sampling from complex high-dimensional distributions. To sample from a distribution with density $\pi(\theta)\propto \exp(-U(\theta)) $, LMC iteratively generates the next sample by taking a step in the gradient direction $\nabla U$ with added Gaussian perturbations. Expectations w.r.t. the target distribution $\pi$ are estimated by averaging over LMC samples. In ordinary Monte Carlo, it is well known that the estimation error can be substantially reduced by replacing independent random samples by quasi-random samples like low-discrepancy sequences. In this work, we show that the estimation error of LMC can also be reduced by using quasi-random samples. Specifically, we propose to use completely uniformly distributed (CUD) sequences with certain low-discrepancy property to generate the Gaussian perturbations. Under smoothness and convexity conditions, we prove that LMC with a low-discrepancy CUD sequence achieves smaller error than standard LMC. The theoretical analysis is supported by compelling numerical experiments, which demonstrate the effectiveness of our approach.
Fivos Kalogiannis, Ioannis Panageas
The works of (Daskalakis et al., 2009, 2022; Jin et al., 2022; Deng et al., 2023) indicate that computing Nash equilibria in multi-player Markov games is a computationally hard task. This fact raises the question of whether or not computational intractability can be circumvented if one focuses on specific classes of Markov games. One such example is two-player zero-sum Markov games, in which efficient ways to compute a Nash equilibrium are known. Inspired by zero-sum polymatrix normal-form games (Cai et al., 2016), we define a class of zero-sum multi-agent Markov games in which there are only pairwise interactions described by a graph that changes per state. For this class of Markov games, we show that an $\epsilon$-approximate Nash equilibrium can be found efficiently. To do so, we generalize the techniques of (Cai et al., 2016), by showing that the set of coarse-correlated equilibria collapses to the set of Nash equilibria. Afterwards, it is possible to use any algorithm in the literature that computes approximate coarse-correlated equilibria Markovian policies to get an approximate Nash equilibrium.
Youquan Liu, Lingdong Kong, Jun CEN, Runnan Chen, Wenwei Zhang, Liang Pan, Kai Chen, Ziwei Liu
tl;dr: Seal is a spatial and temporal consistent framework that leverages vision foundation models for self-supervised learning on large-scale point clouds.
Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, obviating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment regularization stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets. The code is available at this link.
Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, Charles Sutton
tl;dr: We design, train, and evaluate a neural program synthesizer that can construct arbitrary lambda functions for use within higher-order functions to perform looping computations.
Search is an important technique in program synthesis that allows for adaptive strategies such as focusing on particular search directions based on execution results. Several prior works have demonstrated that neural models are effective at guiding program synthesis searches. However, a common drawback of those approaches is the inability to handle iterative loops, higher-order functions, or lambda functions, thus limiting prior neural searches from synthesizing longer and more general programs. We address this gap by designing a search algorithm called LambdaBeam that can construct arbitrary lambda functions that compose operations within a given DSL. We create semantic vector representations of the execution behavior of the lambda functions and train a neural policy network to choose which lambdas to construct during search, and pass them as arguments to higher-order functions to perform looping computations. Our experiments show that LambdaBeam outperforms neural, symbolic, and LLM-based techniques in an integer list manipulation domain.
Wei-Ning Chen, Dan Song, Ayfer Ozgur, Peter Kairouz
Privacy and communication constraints are two major bottlenecks in federated learning (FL) and analytics (FA). We study the optimal accuracy of mean and frequency estimation (canonical models for FL and FA respectively) under joint communication and $(\varepsilon, \delta)$-differential privacy (DP) constraints. We consider both the central and the multi-message shuffled DP models. We show that in order to achieve the optimal $\ell_2$ error under $(\varepsilon, \delta)$-DP, it is sufficient for each client to send $\Theta\left( n \min\left(\varepsilon, \varepsilon^2\right)\right)$ bits for FL %{\color{blue}(assuming the dimension $d \gg n \min\left(\varepsilon, \varepsilon^2\right)$)} and $\Theta\left(\log\left( n\min\left(\varepsilon, \varepsilon^2\right) \right)\right)$ bits for FA to the server, where $n$ is the number of participating clients. Without compression, each client needs $O(d)$ bits and $O\left(\log d\right)$ bits for the mean and frequency estimation problems respectively (where $d$ corresponds to the number of trainable parameters in FL or the domain size in FA), meaning that we can get significant savings in the regime $ n \min\left(\varepsilon, \varepsilon^2\right) = o(d)$, which is often the relevant regime in practice. We propose two different ways to leverage compression for privacy amplification and achieve the optimal privacy-communication-accuracy trade-offs. In both cases, each client communicates only partial information about its sample and we show that privacy is amplified by randomly selecting the part contributed by each client. In the first method, the random selection is revealed to the server, which results in a central DP guarantee with optimal privacy-communication-accuracy trade-offs. In the second method, the random data parts from the clients are shuffled by a secure shuffler resulting in a multi-message shuffling scheme with the same optimal trade-offs. As a result, we establish the optimal three-way trade-offs between privacy, communication, and accuracy for both the central DP and multi-message shuffling frameworks.
Ashwinkumar Badanidiyuru, Badih Ghazi, Pritish Kamath, Ravi Kumar, Ethan Jacob Leeman, Pasin Manurangsi, Avinash V Varadarajan, Chiyuan Zhang
tl;dr: We give improved algorithms for training regression models with label differential privacy.
We propose a new family of label randomizers for training _regression_ models under the constraint of label differential privacy (DP). In particular, we leverage the trade-offs between bias and variance to construct better label randomizers depending on a privately estimated prior distribution over the labels. We demonstrate that these randomizers achieve state-of-the-art privacy-utility trade-offs on several datasets, highlighting the importance of reducing bias when training neural networks with label DP. We also provide theoretical results shedding light on the structural properties of the optimal unbiased randomizers.
Adam Block, Max Simchowitz, Russ Tedrake
tl;dr: In this paper, we provide the first provably oracle-efficient, no-regret algorithm for prediction in piecewise affine systems
The problem of piecewise affine (PWA) regression and planning is of foundational importance to the study of online learning, control, and robotics, where it provides a theoretically and empirically tractable setting to study systems undergoing sharp changes in the dynamics. Unfortunately, due to the discontinuities that arise when crossing into different ``pieces,'' learning in general sequential settings is impossible and practical algorithms are forced to resort to heuristic approaches. This paper builds on the recently developed smoothed online learning framework and provides the first algorithms for prediction and simulation in PWA systems whose regret is polynomial in all relevant problem parameters under a weak smoothness assumption; moreover, our algorithms are efficient in the number of calls to an optimization oracle. We further apply our results to the problems of one-step prediction and multi-step simulation regret in piecewise affine dynamical systems, where the learner is tasked with simulating trajectories and regret is measured in terms of the Wasserstein distance between simulated and true data. Along the way, we develop several technical tools of more general interest.
Joe Watson, Sandy Huang, Nicolas Heess
tl;dr: Perform imitation learning by using a behavioural cloning policy to construct an estimate of a shaped reward function.
Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) for the policy or inverse reinforcement learning (IRL) for the reward. Such methods enable agents to learn complex tasks from humans that are difficult to capture with hand-designed reward functions. Choosing between BC or IRL for imitation depends on the quality and state-action coverage of the demonstrations, as well as additional access to the Markov decision process. Hybrid strategies that combine BC and IRL are rare, as initial policy optimization against inaccurate rewards diminishes the benefit of pretraining the policy with BC. Our work derives an imitation method that captures the strengths of both BC and IRL. In the entropy-regularized (`soft') reinforcement learning setting, we show that the behavioral-cloned policy can be used as both a shaped reward and a critic hypothesis space by inverting the regularized policy update. This coherency facilitates fine-tuning cloned policies using the reward estimate and additional interactions with the environment. This approach conveniently achieves imitation learning through initial behavioral cloning and subsequent refinement via RL with online or offline data sources. The simplicity of the approach enables graceful scaling to high-dimensional and vision-based tasks, with stable learning and minimal hyperparameter tuning, in contrast to adversarial approaches. For the open-source implementation and simulation results, see https://joemwatson.github.io/csil/.
Vinod Raman, UNIQUE SUBEDI, Ambuj Tewari
tl;dr: We study proper PAC learnability under relaxed notions of adversarial robustness.
Recently, Montasser at al. (2019) showed that finite VC dimension is not sufficient for proper adversarially robust PAC learning. In light of this hardness, there is a growing effort to study what type of relaxations to the adversarially robust PAC learning setup can enable proper learnability. In this work, we initiate the study of proper learning under relaxations of the worst-case robust loss. We give a family of robust loss relaxations under which VC classes are properly PAC learnable with sample complexity close to what one would require in the standard PAC learning setup. On the other hand, we show that for an existing and natural relaxation of the worst-case robust loss, finite VC dimension is not sufficient for proper learning. Lastly, we give new generalization guarantees for the adversarially robust empirical risk minimizer.
Yilan Chen, Wei Huang, Hao Wang, Charlotte Loh, Akash Srivastava, Lam M. Nguyen, Tsui-Wei Weng
tl;dr: We derive tight generalization bounds for NNs trained by gradient flow through a connection between NN and kernel machine.
Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments.
Qizhou Wang, Zhen Fang, Yonggang Zhang, Feng Liu, Yixuan Li, Bo Han
Open-world classification systems should discern out-of-distribution (OOD) data whose labels deviate from those of in-distribution (ID) cases, motivating recent studies in OOD detection. Advanced works, despite their promising progress, may still fail in the open world, owing to the lacking knowledge about unseen OOD data in advance. Although one can access auxiliary OOD data (distinct from unseen ones) for model training, it remains to analyze how such auxiliary data will work in the open world. To this end, we delve into such a problem from a learning theory perspective, finding that the distribution discrepancy between the auxiliary and the unseen real OOD data is the key to affect the open-world detection performance. Accordingly, we propose Distributional-Augmented OOD Learning (DAOL), alleviating the OOD distribution discrepancy by crafting an OOD distribution set that contains all distributions in a Wasserstein ball centered on the auxiliary OOD distribution. We justify that the predictor trained over the worst OOD data in the ball can shrink the OOD distribution discrepancy, thus improving the open-world detection performance given only the auxiliary OOD data. We conduct extensive evaluations across representative OOD detection setups, demonstrating the superiority of our DAOL over its advanced counterparts.
Hannaneh Akrami, Kurt Mehlhorn, Masoud Seddighin, Golnoosh Shahkarami
We consider the problem of guaranteeing maximin-share ($\MMS$) when allocating a set of indivisible items to a set of agents with fractionally subadditive ($\XOS$) valuations. For $\XOS$ valuations, it has been previously shown that for some instances no allocation can guarantee a fraction better than $1/2$ of maximin-share to all the agents. Also, a deterministic allocation exists that guarantees $0.219225$ of the maximin-share of each agent. Our results involve both deterministic and randomized allocations. On the deterministic side, we improve the best approximation guarantee for fractionally subadditive valuations to $3/13 = 0.230769$. We develop new ideas on allocating large items in our allocation algorithm which might be of independent interest. Furthermore, we investigate randomized algorithms and the Best-of-both-worlds fairness guarantees. We propose a randomized allocation that is $1/4$-$\MMS$ ex-ante and $1/8$-$\MMS$ ex-post for $\XOS$ valuations. Moreover, we prove an upper bound of $3/4$ on the ex-ante guarantee for this class of valuations.
Dongjie Wang, Meng Xiao, Min Wu, pengfei wang, Yuanchun Zhou, Yanjie Fu
Feature transformation aims to generate new pattern-discriminative feature space from original features to improve downstream machine learning (ML) task performances. However, the discrete search space for the optimal feature explosively grows on the basis of combinations of features and operations from low-order forms to high-order forms. Existing methods, such as exhaustive search, expansion reduction, evolutionary algorithms, reinforcement learning, and iterative greedy, suffer from large search space. Overly emphasizing efficiency in algorithm design usually sacrifice stability or robustness. To fundamentally fill this gap, we reformulate discrete feature transformation as a continuous space optimization task and develop an embedding-optimization-reconstruction framework. This framework includes four steps: 1) reinforcement-enhanced data preparation, aiming to prepare high-quality transformation-accuracy training data; 2) feature transformation operation sequence embedding, intending to encapsulate the knowledge of prepared training data within a continuous space; 3) gradient-steered optimal embedding search, dedicating to uncover potentially superior embeddings within the learned space; 4) transformation operation sequence reconstruction, striving to reproduce the feature transformation solution to pinpoint the optimal feature space. Finally, extensive experiments and case studies are performed to demonstrate the effectiveness and robustness of the proposed method. The code and data are publicly accessible https://www.dropbox.com/sh/imh8ckui7va3k5u/AACulQegVx0MuywYyoCqSdVPa?dl=0.
Kavosh Asadi, Shoham Sabach, Yao Liu, Omer Gottesman, Rasool Fakoor
We study the convergence behavior of the celebrated temporal-difference (TD) learning algorithm. By looking at the algorithm through the lens of optimization, we first argue that TD can be viewed as an iterative optimization algorithm where the function to be minimized changes per iteration. By carefully investigating the divergence displayed by TD on a classical counter example, we identify two forces that determine the convergent or divergent behavior of the algorithm. We next formalize our discovery in the linear TD setting with quadratic loss and prove that convergence of TD hinges on the interplay between these two forces. We extend this optimization perspective to prove convergence of TD in a much broader setting than just linear approximation and squared loss. Our results provide a theoretical explanation for the successful application of TD in reinforcement learning.
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, Suvrit Sra
Motivated by the striking